Suppr超能文献

基于多种皮质特性揭示婴儿大脑皮质的发育分区

Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties.

作者信息

Wang Fan, Lian Chunfeng, Wu Zhengwang, Wang Li, Lin Weili, Gilmore John H, Shen Dinggang, Li Gang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11765:841-849. doi: 10.1007/978-3-030-32245-8_93. Epub 2019 Oct 10.

Abstract

The human brain develops dynamically and regionally heterogeneously during the first two postnatal years. Cortical developmental regionalization, i.e., the landscape of cortical heterogeneity in development, reflects the organization of underlying microstructures, which are closely related to the functional principles of the cortex. Therefore, prospecting early cortical developmental regionalization can provide neurobiologically meaningful units for precise region localization, which will advance our understanding on brain development in this critical period. However, due to the absence of dedicated computational tools and large-scale datasets, our knowledge on early cortical developmental regionalization still remains intact. To fill both the methodological and knowledge gaps, we propose to explore the cortical developmental regionalization using a novel method based on nonnegative matrix factorization (NMF), due to its ability in analyzing complex high-dimensional data by representing data using several bases in a data-driven way. Specifically, a novel multi-view NMF (MV-NMF) method is proposed, in which multiple distinct and complementary cortical properties (i.e., multiple views) are jointly considered to provide comprehensive observation of cortical regionalization process. To ensure the sparsity of the discovered regions, an orthogonal constraint defined in Stiefel manifold is imposed in our MV-NMF method. Meanwhile, a graph-induced constraint is also included to improve the compactness of the discovered regions. Capitalizing on an unprecedentedly large dataset with 1,560 longitudinal MRI scans from 887 infants, we delineate the first neurobiologically meaningful representation of early cortical regionalization, providing a valuable reference for brain development studies.

摘要

人类大脑在出生后的头两年中动态且区域异质性地发育。皮质发育区域化,即发育过程中皮质异质性的格局,反映了潜在微观结构的组织,这些微观结构与皮质的功能原理密切相关。因此,探寻早期皮质发育区域化可为精确的区域定位提供具有神经生物学意义的单元,这将增进我们对这一关键时期大脑发育的理解。然而,由于缺乏专门的计算工具和大规模数据集,我们对早期皮质发育区域化的认识仍然有限。为了填补方法和知识上的空白,我们建议使用一种基于非负矩阵分解(NMF)的新方法来探索皮质发育区域化,因为它能够通过以数据驱动的方式用几个基来表示数据,从而分析复杂的高维数据。具体而言,我们提出了一种新颖的多视图NMF(MV-NMF)方法,其中联合考虑了多个不同且互补的皮质属性(即多个视图),以全面观察皮质区域化过程。为了确保所发现区域的稀疏性,我们在MV-NMF方法中施加了在Stiefel流形中定义的正交约束。同时,还包括一个图诱导约束以提高所发现区域的紧凑性。利用来自887名婴儿的1560次纵向MRI扫描的前所未有的大规模数据集,我们描绘了早期皮质区域化的首个具有神经生物学意义的表征,为大脑发育研究提供了有价值的参考。

相似文献

1
Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties.基于多种皮质特性揭示婴儿大脑皮质的发育分区
Med Image Comput Comput Assist Interv. 2019 Oct;11765:841-849. doi: 10.1007/978-3-030-32245-8_93. Epub 2019 Oct 10.
2
Developmental topography of cortical thickness during infancy.婴儿期皮质厚度的发育拓扑
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15855-15860. doi: 10.1073/pnas.1821523116. Epub 2019 Jul 22.
4
Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface.基于发育模式的婴儿皮质表面个体化分割
Med Image Comput Comput Assist Interv. 2017 Sep;10433:66-74. doi: 10.1007/978-3-319-66182-7_8. Epub 2017 Sep 4.
6
Variational Bayesian Orthogonal Nonnegative Matrix Factorization Over the Stiefel Manifold.
IEEE Trans Image Process. 2022;31:5543-5558. doi: 10.1109/TIP.2022.3194701. Epub 2022 Aug 26.
10
Manifold Peaks Nonnegative Matrix Factorization.流形峰值非负矩阵分解
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6850-6862. doi: 10.1109/TNNLS.2022.3212922. Epub 2024 May 2.

引用本文的文献

本文引用的文献

1
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
3
Topographic organization of the cerebral cortex and brain cartography.大脑皮层的地形组织和脑图谱。
Neuroimage. 2018 Apr 15;170:332-347. doi: 10.1016/j.neuroimage.2017.02.018. Epub 2017 Feb 20.
4
Development and aging of cortical thickness correspond to genetic organization patterns.皮层厚度的发育和衰老与基因组织模式相对应。
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15462-7. doi: 10.1073/pnas.1508831112. Epub 2015 Nov 2.
6
Genetic topography of brain morphology.脑形态的遗传地形学。
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17089-94. doi: 10.1073/pnas.1308091110. Epub 2013 Sep 30.
8
Graph Regularized Nonnegative Matrix Factorization for Data Representation.基于图正则化的非负矩阵分解数据表示方法
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1548-60. doi: 10.1109/TPAMI.2010.231. Epub 2010 Dec 23.
9
Linear and nonlinear projective nonnegative matrix factorization.线性和非线性投影非负矩阵分解
IEEE Trans Neural Netw. 2010 May;21(5):734-49. doi: 10.1109/TNN.2010.2041361. Epub 2010 Mar 25.
10
Spherical demons: fast diffeomorphic landmark-free surface registration.球形恶魔:快速的非刚性地标自由表面配准。
IEEE Trans Med Imaging. 2010 Mar;29(3):650-68. doi: 10.1109/TMI.2009.2030797. Epub 2009 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验