Suppr超能文献

基于发育模式的婴儿皮质表面个体化分割

Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface.

作者信息

Li Gang, Wang Li, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2017 Sep;10433:66-74. doi: 10.1007/978-3-319-66182-7_8. Epub 2017 Sep 4.

Abstract

The human cerebral cortex develops dynamically during the early postnatal stage, reflecting the underlying rapid changes of cortical microstructures and their connections, which jointly determine the functional principles of cortical regions. Hence, the dynamic cortical developmental patterns are ideal for defining the distinct cortical regions in microstructure and function for neurodevelopmental studies. Moreover, given the remarkable inter-subject variability in terms of cortical structure/function and their developmental patterns, the cortical parcellation based on each infant's own developmental patterns is critical for precisely localizing personalized distinct cortical regions and also understanding inter-subject variability. To this end, we propose a novel method for individualized parcellation of the infant cortical surface into distinct and meaningful regions based on each individual's cortical developmental patterns. Specifically, to alleviate the effects of cortical measurement errors and also make the individualized cortical parcellation comparable across subjects, we first create a -based cortical parcellation to capture the general developmental landscape of the cortex in an infant population. Then, this -based parcellation is leveraged to guide the parcellation based on each infant's own cortical developmental patterns in an manner. At each iteration, the individualized parcellation is gradually updated based on 1) the prior information of the -based parcellation, 2) the parcellation at the previous iteration, and also 3) the developmental patterns of all vertices. Experiments on fifteen healthy infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3, 6, 9, 12 and 18 months of age), show that our method generates a reliable and meaningful individualized cortical parcellation based on each infant's own developmental patterns.

摘要

人类大脑皮层在出生后早期动态发育,反映了皮层微观结构及其连接的潜在快速变化,这些共同决定了皮层区域的功能原理。因此,动态皮层发育模式非常适合在神经发育研究中定义微观结构和功能上不同的皮层区域。此外,鉴于个体间在皮层结构/功能及其发育模式方面存在显著差异,基于每个婴儿自身发育模式的皮层分区对于精确定位个性化的不同皮层区域以及理解个体间差异至关重要。为此,我们提出了一种基于每个个体的皮层发育模式将婴儿皮层表面个性化划分为不同且有意义区域的新方法。具体而言,为了减轻皮层测量误差的影响并使跨个体的个性化皮层分区具有可比性,我们首先创建一个基于图谱的皮层分区,以捕捉婴儿群体中皮层的一般发育情况。然后,利用这种基于图谱的分区以迭代方式指导基于每个婴儿自身皮层发育模式的分区。在每次迭代中,个性化分区会根据以下因素逐步更新:1)基于图谱的分区的先验信息;2)上一次迭代的分区;3)所有顶点的发育模式。对15名健康婴儿进行的实验,每个婴儿在六个时间点(即1、3、6、9、12和18个月大)进行了纵向MRI扫描,结果表明我们的方法基于每个婴儿自身的发育模式生成了可靠且有意义的个性化皮层分区。

相似文献

1
Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface.基于发育模式的婴儿皮质表面个体化分割
Med Image Comput Comput Assist Interv. 2017 Sep;10433:66-74. doi: 10.1007/978-3-319-66182-7_8. Epub 2017 Sep 4.
2
Fetal cortical surface atlas parcellation based on growth patterns.基于生长模式的胎儿皮质表面图谱分割。
Hum Brain Mapp. 2019 Sep;40(13):3881-3899. doi: 10.1002/hbm.24637. Epub 2019 May 20.
7
Group-wise consistent cortical parcellation based on connectional profiles.基于连接模式的组内一致皮质分块
Med Image Anal. 2016 Aug;32:32-45. doi: 10.1016/j.media.2016.02.009. Epub 2016 Mar 14.

引用本文的文献

2
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.

本文引用的文献

1
Parcellating cortical functional networks in individuals.在个体中划分皮质功能网络。
Nat Neurosci. 2015 Dec;18(12):1853-60. doi: 10.1038/nn.4164. Epub 2015 Nov 9.
7
Genetic topography of brain morphology.脑形态的遗传地形学。
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17089-94. doi: 10.1073/pnas.1308091110. Epub 2013 Sep 30.
9
Centenary of Brodmann's map--conception and fate.布罗德曼大脑皮质分区图谱诞生百年——构想与命运
Nat Rev Neurosci. 2010 Feb;11(2):139-45. doi: 10.1038/nrn2776. Epub 2010 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验