Ariga Katsuhiko, Mori Taizo, Kitao Takashi, Uemura Takashi
WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
Adv Mater. 2020 Oct;32(41):e1905657. doi: 10.1002/adma.201905657. Epub 2020 Mar 19.
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
基于手性控制来探索分子功能和材料特性将是一种科学上优雅的方法。在此,我们将讨论使用超分子纳米建筑学概念,由手性和非手性组分构建具有手性特征的材料及其功能。内容分为三个主题:i)相当普遍的分子组装体的手性纳米建筑学;ii)金属有机框架(MOF)的手性纳米建筑学;iii)液晶中的手性纳米建筑学。MOF结构基于纳米尺度上定义明确的配位,而液晶相的介观取向常常可以灵活改变。对这些具有完全不同性质的代表性材料体系中的效应和特征进行讨论,揭示了超分子手性纳米建筑学的普遍重要性。从分子到手性分子信息在材料级结构上的放大,以及在时间统计涨落下由非手性组分产生手性,无论组装体的性质如何都是普遍存在的。因此,这些特性无疑是广泛应用的有利特征。