Ariga Katsuhiko, Nishikawa Michihiro, Mori Taizo, Takeya Jun, Shrestha Lok Kumar, Hill Jonathan P
WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan.
Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
Sci Technol Adv Mater. 2019 Jan 31;20(1):51-95. doi: 10.1080/14686996.2018.1553108. eCollection 2019.
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
利用纳米级单元的先进材料科学技术发展,可以通过一种新颖的概念来实现,该概念涉及将纳米技术方法与各种研究学科相结合,特别是超分子化学。这种新颖的概念被称为“纳米构造学”,在许多涉及多种组成材料的情况下,自组装过程至关重要。本文对自组装过程的综述重新审视了材料纳米构造学的最新进展。它由三个主要部分组成:(1)第一个简短部分描述了自组装研究的典型例子,以概述本综述中讨论的问题;(2)第二部分从一般观点总结了界面处的自组装;(3)最后一部分专注于界面处的自组装过程。所展示的例子证明了自组装过程惊人的广泛可能性和未来潜力,以及它们对材料纳米构造学的重要贡献。本综述中描述的研究例子涵盖了各种结构的对象,包括分子机器、分子受体、分子钳、分子转子、纳米颗粒、纳米片、纳米管、纳米线、纳米薄片、纳米立方体、纳米盘、纳米环、嵌段共聚物、超支化聚合物、超分子聚合物、超分子凝胶、液晶、朗缪尔单层、朗缪尔 - 布洛杰特膜、自组装单分子层、薄膜、逐层结构、呼吸图案结构、二维分子图案、富勒烯晶体、金属有机框架、配位聚合物、配位胶囊、多孔碳球、介孔材料、多核催化剂、DNA折纸、跨膜通道、肽缀合物和囊泡,以及用于传感、表面增强拉曼光谱、光伏、电荷传输、激发能量转移、光捕获、光催化剂、场效应晶体管、逻辑门、有机半导体、薄膜基器件、药物递送、细胞培养、超分子分化、分子识别、分子调控和手动(手工操作)纳米技术的功能材料。