Suppr超能文献

利用高光谱反射率和机器学习算法对茶叶叶绿素含量进行无损检测

Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms.

作者信息

Sonobe Rei, Hirono Yuhei, Oi Ayako

机构信息

Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan.

Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimada 428-8501, Japan.

出版信息

Plants (Basel). 2020 Mar 17;9(3):368. doi: 10.3390/plants9030368.

Abstract

Tea trees are kept in shaded locations to increase their chlorophyll content, which influences green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions is important for managing tea trees and producing high-quality green tea. Hyperspectral remote sensing is one of the most frequently used methods for estimating chlorophyll content. Numerous studies based on data collected under relatively low-stress conditions and many hyperspectral indices and radiative transfer models show that shade-grown tea performs poorly. The performance of four machine learning algorithms-random forest, support vector machine, deep belief nets, and kernel-based extreme learning machine (KELM)-in evaluating data collected from tea leaves cultivated under different shade treatments was tested. KELM performed best with a root-mean-square error of 8.94 ± 3.05 μg cm and performance to deviation values from 1.70 to 8.04 for the test data. These results suggest that a combination of hyperspectral reflectance and KELM has the potential to trace changes in the chlorophyll content of shaded tea leaves.

摘要

茶树种植在阴凉处,以增加其叶绿素含量,这会影响绿茶品质。因此,监测弱光条件下叶绿素含量的变化对于茶树管理和生产高品质绿茶至关重要。高光谱遥感是估算叶绿素含量最常用的方法之一。许多基于相对低胁迫条件下收集的数据、众多高光谱指数和辐射传输模型的研究表明,遮荫种植的茶树表现不佳。测试了四种机器学习算法——随机森林、支持向量机、深度信念网络和基于核的极限学习机(KELM)——在评估不同遮荫处理下种植的茶叶收集的数据方面的性能。KELM表现最佳,测试数据的均方根误差为8.94±3.05μg/cm,性能偏差值为1.70至8.04。这些结果表明,高光谱反射率和KELM的组合有潜力追踪遮荫茶叶叶绿素含量的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed79/7154821/497403f545f4/plants-09-00368-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验