Suppr超能文献

基于高光谱指数数据融合并通过MRMR算法增强的机器学习用于估算玉米叶绿素含量

Hyperspectral indices data fusion-based machine learning enhanced by MRMR algorithm for estimating maize chlorophyll content.

作者信息

Nagy Attila, Szabó Andrea, Elbeltagi Ahmed, Nxumalo Gift Siphiwe, Bódi Erika Budayné, Tamás János

机构信息

Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

National Laboratory for Water Science and Water Safety, Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

出版信息

Front Plant Sci. 2024 Oct 16;15:1419316. doi: 10.3389/fpls.2024.1419316. eCollection 2024.

Abstract

Accurate estimation of chlorophyll is essential for monitoring maize health and growth, for which hyperspectral imaging provides rich data. In this context, this paper presents an innovative method to estimate maize chlorophyll by combining hyperspectral indices and advanced machine learning models. The methodology of this study focuses on the development of machine learning models using proprietary hyperspectral indices to estimate corn chlorophyll content. Six advanced machine learning models were used, including robust linear stepwise regression, support vector machines (SVM), fine Gaussian SVM, Matern 5/2 Gaussian stepwise regression, and three-layer neural network. The MRMR algorithm was integrated into the process to improve feature selection by identifying the most informative spectral bands, thereby reducing data redundancy and improving model performance. The results showed significant differences in the performance of the six machine learning models applied to chlorophyll estimation. Among the models, the Matern 5/2 Gaussian process regression model showed the highest prediction accuracy. The model achieved R = 0.71 for the training set, RMSE = 338.46 µg/g and MAE = 264.30 µg/g. In the case of the validation set, the Matern 5/2 Gaussian process regression model further improved its performance, reaching R =0.79, RMSE=296.37 µg/g, MAE=237.12 µg/g. These metrics show that Matern's 5/2 Gaussian process regression model combined with the MRMR algorithm to select optimal traits is highly effective in predicting corn chlorophyll content. This research has important implications for precision agriculture, particularly for real-time monitoring and management of crop health. Accurate estimation of chlorophyll allows farmers to take timely and targeted action.

摘要

准确估算叶绿素对于监测玉米的健康状况和生长情况至关重要,而高光谱成像为此提供了丰富的数据。在此背景下,本文提出了一种通过结合高光谱指数和先进机器学习模型来估算玉米叶绿素的创新方法。本研究的方法重点在于利用专有的高光谱指数开发机器学习模型,以估算玉米叶绿素含量。使用了六种先进的机器学习模型,包括稳健线性逐步回归、支持向量机(SVM)、精细高斯SVM、Matern 5/2高斯逐步回归和三层神经网络。将MRMR算法集成到该过程中,通过识别最具信息性的光谱波段来改进特征选择,从而减少数据冗余并提高模型性能。结果表明,应用于叶绿素估算的六种机器学习模型的性能存在显著差异。在这些模型中,Matern 5/2高斯过程回归模型显示出最高的预测准确性。该模型在训练集上的R值为0.71,均方根误差(RMSE)为338.46μg/g,平均绝对误差(MAE)为264.30μg/g。在验证集的情况下,Matern 5/2高斯过程回归模型进一步提高了其性能,达到R = 0.79,RMSE = 296.37μg/g,MAE = 237.12μg/g。这些指标表明,结合MRMR算法选择最优特征的Matern 5/2高斯过程回归模型在预测玉米叶绿素含量方面非常有效。这项研究对精准农业具有重要意义,特别是对于作物健康的实时监测和管理。准确估算叶绿素使农民能够及时采取有针对性的行动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e49/11521818/59dd98c762b4/fpls-15-1419316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验