Suppr超能文献

数据在元动力学模拟中的再加权。

Data Reweighting in Metadynamics Simulations.

机构信息

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Graduate School Materials Science in Mainz, Mainz, Germany.

出版信息

J Chem Theory Comput. 2020 Apr 14;16(4):2042-2052. doi: 10.1021/acs.jctc.9b00867. Epub 2020 Mar 31.

Abstract

The data collected along a metadynamics simulation can be used to recover information about the underlying unbiased system by means of a reweighting procedure. Here, we analyze the behavior of several reweighting techniques in terms of the quality of the reconstruction of the underlying unbiased free energy landscape in the early stages of the simulation and propose a simple reweighting scheme that we relate to the other techniques. We then show that the free energy landscape reconstructed from reweighted data can be more accurate than the negative bias potential depending on the reweighting technique, the stage of the simulation, and the adoption of well-tempered or standard metadynamics. While none of the tested reweighting techniques from the literature provides the most accurate results in all the analyzed situations, the one proposed here, in addition to helping simplifying the reweighting procedure, converges quickly and precisely to the underlying free energy surface in all the considered cases, thus allowing for an efficient use of limited simulation data.

摘要

沿元动力学模拟收集的数据可通过重新加权过程用于恢复有关基础无偏系统的信息。在这里,我们根据模拟早期重建基础无偏自由能景观的质量,分析了几种重新加权技术的行为,并提出了一种与其他技术相关的简单重新加权方案。然后,我们表明,从重新加权数据重建的自由能景观可以比负偏压势更准确,这取决于重新加权技术、模拟阶段以及采用温和或标准元动力学。尽管文献中的测试的重新加权技术没有一种在所有分析情况下都提供最准确的结果,但这里提出的方法除了有助于简化重新加权过程之外,在所有考虑的情况下都快速而准确地收敛到基础自由能表面,从而允许有效地利用有限的模拟数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验