Suppr超能文献

约束随机状态估计的变形 1D 对象:在单视图 3D 重建带放射不透标记导管中的应用。

Constrained stochastic state estimation of deformable 1D objects: Application to single-view 3D reconstruction of catheters with radio-opaque markers.

机构信息

Université de Strasbourg, Inria, F-54000 Nancy, France.

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.

出版信息

Comput Med Imaging Graph. 2020 Apr;81:101702. doi: 10.1016/j.compmedimag.2020.101702. Epub 2020 Feb 7.

Abstract

Minimally invasive fluoroscopy-based procedures are the gold standard for diagnosis and treatment of various pathologies of the cardiovascular system. This kind of procedures imply for the clinicians to infer the 3D shape of the device from 2D images, which is known to be an ill-posed problem. In this paper we present a method to reconstruct the 3D shape of the interventional device, with the aim of improving the navigation. The method combines a physics-based simulation with non-linear Bayesian filter. Whereas the physics-based model provides a prediction of the shape of the device navigating within the blood vessels (taking into account non-linear interactions between the catheter and the surrounding anatomy), an Unscented Kalman Filter is used to correct the navigation model using 2D image features as external observations. The proposed framework has been evaluated on both synthetic and real data, under different model parameterizations, filter parameters tuning and external observations data-sets. Comparing the reconstructed 3D shape with a known ground truth, for the synthetic data-set, we obtained average values for 3D Hausdorff Distance of 0.81±0.53mm, for the 3D mean distance at the segment of 0.37±0.17mm and an average 3D tip error of 0.24±0.13mm. For the real data-set,we obtained an average 3D Hausdorff distance of 1.74±0.77mm, a average 3D mean distance at the distal segment of 0.91±0.14mm, an average 3D error on the tip of 0.53±0.09mm. These results show the ability of our method to retrieve the 3D shape of the device, under a variety of filter parameterizations and challenging conditions: uncertainties on model parameterization, ambiguous views and non-linear complex phenomena such as stick and slip motions.

摘要

基于微创透视的程序是诊断和治疗心血管系统各种病变的金标准。这种程序要求临床医生从二维图像中推断出器械的三维形状,这是一个病态问题。在本文中,我们提出了一种重建介入器械三维形状的方法,旨在改善导航。该方法结合了基于物理的模拟和非线性贝叶斯滤波器。虽然基于物理的模型提供了在血管内导航的器械形状的预测(考虑到导管和周围解剖结构之间的非线性相互作用),但使用无迹卡尔曼滤波器使用二维图像特征作为外部观测来校正导航模型。在所提出的框架下,在不同的模型参数化、滤波器参数调整和外部观测数据集下,对合成和真实数据进行了评估。将重建的三维形状与已知的真实值进行比较,对于合成数据集,我们获得的三维 Hausdorff 距离的平均值为 0.81±0.53mm,三维平均距离在 0.37±0.17mm 处的平均值为 0.37±0.17mm,三维尖端误差的平均值为 0.24±0.13mm。对于真实数据集,我们获得的三维 Hausdorff 距离的平均值为 1.74±0.77mm,远段的三维平均距离为 0.91±0.14mm,尖端的三维平均误差为 0.53±0.09mm。这些结果表明,我们的方法能够在各种滤波器参数化和具有挑战性的条件下恢复器械的三维形状:模型参数化的不确定性、模糊的视图以及粘滑等非线性复杂现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验