State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China.
Nat Commun. 2020 Mar 19;11(1):1468. doi: 10.1038/s41467-020-15234-8.
The α-glucosidase inhibitor acarbose, produced by Actinoplanes sp. SE50/110, is a well-known drug for the treatment of type 2 diabetes mellitus. However, the largely unexplored biosynthetic mechanism of this compound has impeded further titer improvement. Herein, we uncover that 1-epi-valienol and valienol, accumulated in the fermentation broth at a strikingly high molar ratio to acarbose, are shunt products that are not directly involved in acarbose biosynthesis. Additionally, we find that inefficient biosynthesis of the amino-deoxyhexose moiety plays a role in the formation of these shunt products. Therefore, strategies to minimize the flux to the shunt products and to maximize the supply of the amino-deoxyhexose moiety are implemented, which increase the acarbose titer by 1.2-fold to 7.4 g L. This work provides insights into the biosynthesis of the C-cyclitol moiety and highlights the importance of assessing shunt product accumulation when seeking to improve the titer of microbial pharmaceutical products.
阿卡波糖是一种由 Actinoplanes sp. SE50/110 产生的α-葡萄糖苷酶抑制剂,是治疗 2 型糖尿病的知名药物。然而,由于该化合物的生物合成机制在很大程度上尚未被探索,因此进一步提高其产量受到了阻碍。在此,我们揭示了在发酵液中积累的 1-表基瓦伦醇和瓦伦醇以与阿卡波糖显著高的摩尔比作为分流产物,它们不直接参与阿卡波糖的生物合成。此外,我们发现氨基脱氧己糖部分的生物合成效率低下是形成这些分流产物的原因。因此,我们实施了旨在最小化分流产物通量和最大化氨基脱氧己糖供应的策略,将阿卡波糖的产量提高了 1.2 倍,达到 7.4 g/L。这项工作为 C-环醇部分的生物合成提供了新的见解,并强调了在寻求提高微生物药物产品的产量时评估分流产物积累的重要性。