Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA.
Nat Commun. 2020 Mar 19;11(1):1460. doi: 10.1038/s41467-020-14970-1.
Since the discovery of quantum beats in the two-dimensional electronic spectra of photosynthetic pigment-protein complexes over a decade ago, the origin and mechanistic function of these beats in photosynthetic light-harvesting has been extensively debated. The current consensus is that these long-lived oscillatory features likely result from electronic-vibrational mixing, however, it remains uncertain if such mixing significantly influences energy transport. Here, we examine the interplay between the electronic and nuclear degrees of freedom (DoF) during the excitation energy transfer (EET) dynamics of light-harvesting complex II (LHCII) with two-dimensional electronic-vibrational spectroscopy. Particularly, we show the involvement of the nuclear DoF during EET through the participation of higher-lying vibronic chlorophyll states and assign observed oscillatory features to specific EET pathways, demonstrating a significant step in mapping evolution from energy to physical space. These frequencies correspond to known vibrational modes of chlorophyll, suggesting that electronic-vibrational mixing facilitates rapid EET over moderately size energy gaps.
自十多年前在光合色素蛋白复合物的二维电子光谱中发现量子拍频以来,这些在光合作用光捕获中的起源和机械功能一直备受争议。目前的共识是,这些长寿命的振荡特征可能是由于电子-振动混合引起的,然而,目前尚不确定这种混合是否会显著影响能量传递。在这里,我们使用二维电子-振动光谱研究了在光捕获复合物 II (LHCII) 的激发能量转移 (EET) 动力学过程中电子和核自由度 (DoF) 之间的相互作用。特别是,我们通过参与更高的振子叶绿素态来表明核 DoF 在 EET 过程中的参与,并将观察到的振荡特征分配给特定的 EET 途径,从而在从能量映射到物理空间方面迈出了重要一步。这些频率与已知的叶绿素振动模式相对应,这表明电子-振动混合促进了在中等大小的能量间隙内快速的 EET。