Basu Urbashi, Balakrishnan Sruthi S, Janardan Vishnu, Raghu Padinjat
National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India.
National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India.
Dev Biol. 2020 Jun 15;462(2):208-222. doi: 10.1016/j.ydbio.2020.03.008. Epub 2020 Mar 17.
Phosphatidylinositol 4 phosphate (PI4P) and phosphatidylinositol 4,5 bisphosphate [PI(4,5)P] are enriched on the inner leaflet of the plasma membrane and proposed to be key determinants of its function. PI4P is also the biochemical precursor for the synthesis of PI(4,5)P but can itself also bind to and regulate protein function. However, the independent function of PI4P at the plasma membrane in supporting cell function in metazoans during development in vivo remains unclear. We find that conserved components of a multi-protein complex composed of phosphatidylinositol 4-kinase IIIα (PI4KIIIα), TTC7 and Efr3 is required for normal vein patterning and wing development. Depletion of each of these three components of the PI4KIIIα complex in developing wing cells results in altered wing morphology. These effects are associated with an increase in apoptosis and can be rescued by expression of an inhibitor of Drosophila caspase. We find that in contrast to previous reports, PI4KIIIα depletion does not alter key outputs of hedgehog signalling in developing wing discs. Depletion of PI4KIIIα results in reduced PI4P levels at the plasma membrane of developing wing disc cells while levels of PI(4,5)P, the downstream metabolite of PI4P, are not altered. Thus, PI4P itself generated by the activity of the PI4KIIIα complex plays an essential role in supporting cell viability in the developing Drosophila wing disc.
磷脂酰肌醇4-磷酸(PI4P)和磷脂酰肌醇4,5-二磷酸[PI(4,5)P]在质膜的内小叶中富集,并被认为是其功能的关键决定因素。PI4P也是合成PI(4,5)P的生化前体,但其本身也能结合并调节蛋白质功能。然而,在体内发育过程中,PI4P在质膜上支持后生动物细胞功能的独立作用仍不清楚。我们发现,由磷脂酰肌醇4-激酶IIIα(PI4KIIIα)、TTC7和Efr3组成的多蛋白复合物的保守成分是正常静脉模式形成和翅膀发育所必需的。在发育中的翅膀细胞中,PI4KIIIα复合物的这三个成分中的每一个的缺失都会导致翅膀形态改变。这些影响与细胞凋亡增加有关,并且可以通过表达果蝇半胱天冬酶抑制剂来挽救。我们发现,与先前的报道相反,PI4KIIIα的缺失不会改变发育中的翅膀盘中刺猬信号通路的关键输出。PI4KIIIα的缺失导致发育中的翅膀盘细胞的质膜上PI4P水平降低。而PI4P的下游代谢产物PI(4,5)P的水平没有改变。因此,由PI4KIIIα复合物的活性产生的PI4P本身在支持发育中的果蝇翅膀盘中的细胞活力方面起着至关重要的作用。