Suppr超能文献

神经元-少突胶质细胞相互作用:细胞信号活动依赖性调节。

Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling.

机构信息

Department of Cell and Developmental Biology, University of Colorado School of Medicine, United States.

Department of Cell and Developmental Biology, University of Colorado School of Medicine, United States.

出版信息

Neurosci Lett. 2020 May 14;727:134916. doi: 10.1016/j.neulet.2020.134916. Epub 2020 Mar 16.

Abstract

Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, gene expression, maturation, integration, and axonal support. Additionally, activity-dependent neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating injuries. In this review, we summarize the modalities of communication between neurons and oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating cellular behavior and myelination.

摘要

少突胶质细胞谱系细胞(少突胶质细胞)和神经元在整个生命过程中进行双向通讯,以支持大脑的健康功能。最近的研究表明,神经元活动的变化可以调节增殖、分化和髓鞘形成,以支持神经回路的形成和功能。虽然少突胶质细胞表达了大量的生长因子、信号分子、神经递质和神经调质的受体,但我们对受神经元活动调节的细胞内信号通路的了解仍在很大程度上不完整。许多调节少突胶质细胞行为的途径是由细胞内钙信号的变化驱动的,这可能会对细胞骨架动力学、基因表达、成熟、整合和轴突支持产生不同的影响。此外,活性依赖性神经元-少突胶质细胞通讯在脱髓鞘损伤的恢复中起着至关重要的作用。在这篇综述中,我们总结了神经元和少突胶质细胞之间的通讯方式,并探讨了活性依赖性钙信号在调节细胞行为和髓鞘形成中的可能作用。

相似文献

1
Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling.
Neurosci Lett. 2020 May 14;727:134916. doi: 10.1016/j.neulet.2020.134916. Epub 2020 Mar 16.
2
Glutamate versus GABA in neuron-oligodendroglia communication.
Glia. 2019 Nov;67(11):2092-2106. doi: 10.1002/glia.23618. Epub 2019 Apr 7.
3
Calcium Signaling in the Oligodendrocyte Lineage: Regulators and Consequences.
Annu Rev Neurosci. 2020 Jul 8;43:163-186. doi: 10.1146/annurev-neuro-100719-093305. Epub 2020 Feb 19.
4
Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis.
J Cell Sci. 2006 Nov 1;119(Pt 21):4381-9. doi: 10.1242/jcs.03242.
5
Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.
Neurochem Res. 2018 Jan;43(1):190-194. doi: 10.1007/s11064-017-2387-5. Epub 2017 Sep 16.
6
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease.
Neuropharmacology. 2016 Nov;110(Pt B):574-585. doi: 10.1016/j.neuropharm.2016.06.014. Epub 2016 Jun 23.
7
Ca Signaling in Oligodendrocyte Development.
Cell Mol Neurobiol. 2019 Nov;39(8):1071-1080. doi: 10.1007/s10571-019-00705-4. Epub 2019 Jun 19.
8
Microenvironmental interactions of oligodendroglial cells.
Dev Cell. 2021 Jul 12;56(13):1821-1832. doi: 10.1016/j.devcel.2021.06.006. Epub 2021 Jun 29.
9
Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair.
J Neurochem. 2010 Sep 1;114(5):1243-60. doi: 10.1111/j.1471-4159.2010.06831.x. Epub 2010 May 26.
10
Glial and Neuronal Protein Tyrosine Phosphatase Alpha (PTPα) Regulate Oligodendrocyte Differentiation and Myelination.
J Mol Neurosci. 2017 Aug;62(3-4):329-343. doi: 10.1007/s12031-017-0941-x. Epub 2017 Jun 24.

引用本文的文献

1
Demyelination and Remyelination: General Principles.
Adv Neurobiol. 2025;43:207-255. doi: 10.1007/978-3-031-87919-7_9.
2
The Role of Oligodendrocytes in Neurodegenerative Diseases: Unwrapping the Layers.
Int J Mol Sci. 2025 May 12;26(10):4623. doi: 10.3390/ijms26104623.
4
Single nucleus RNA-sequencing reveals transcriptional synchrony across different relationships.
bioRxiv. 2024 Nov 12:2024.03.27.587112. doi: 10.1101/2024.03.27.587112.
5
Hidden in the white matter: Current views on interstitial white matter neurons.
Neuroscientist. 2024 Oct 4:10738584241282969. doi: 10.1177/10738584241282969.
8
Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis.
Nat Neurosci. 2024 May;27(5):846-861. doi: 10.1038/s41593-024-01613-7. Epub 2024 Mar 27.

本文引用的文献

1
Preservation of a remote fear memory requires new myelin formation.
Nat Neurosci. 2020 Apr;23(4):487-499. doi: 10.1038/s41593-019-0582-1. Epub 2020 Feb 10.
2
Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice.
Neuron. 2020 Jan 8;105(1):150-164.e6. doi: 10.1016/j.neuron.2019.10.013. Epub 2019 Nov 18.
4
Oligodendrocytes express synaptic proteins that modulate myelin sheath formation.
Nat Commun. 2019 Sep 11;10(1):4125. doi: 10.1038/s41467-019-12059-y.
5
Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment.
Neuron. 2019 Jul 17;103(2):250-265.e8. doi: 10.1016/j.neuron.2019.04.032. Epub 2019 May 20.
6
Lack of Brain Serotonin Affects Feeding and Differentiation of Newborn Cells in the Adult Hypothalamus.
Front Cell Dev Biol. 2019 Apr 26;7:65. doi: 10.3389/fcell.2019.00065. eCollection 2019.
7
Neuronal activity in vivo enhances functional myelin repair.
JCI Insight. 2019 Mar 21;5(9):123434. doi: 10.1172/jci.insight.123434.
8
Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age.
Neuron. 2019 Feb 6;101(3):459-471.e5. doi: 10.1016/j.neuron.2018.12.020. Epub 2019 Jan 14.
9
High-Frequency Microdomain Ca Transients and Waves during Early Myelin Internode Remodeling.
Cell Rep. 2019 Jan 2;26(1):182-191.e5. doi: 10.1016/j.celrep.2018.12.039.
10
Axoglial Adhesion by Cadm4 Regulates CNS Myelination.
Neuron. 2019 Jan 16;101(2):224-231.e5. doi: 10.1016/j.neuron.2018.11.032. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验