Ju Yi, Cortez-Jugo Christina, Chen Jingqu, Wang Ting-Yi, Mitchell Andrew J, Tsantikos Evelyn, Bertleff-Zieschang Nadja, Lin Yu-Wei, Song Jiaying, Cheng Yizhe, Mettu Srinivas, Rahim Md Arifur, Pan Shuaijun, Yun Gyeongwon, Hibbs Margaret L, Yeo Leslie Y, Hagemeyer Christoph E, Caruso Frank
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia.
Nanobiotechnology Laboratory Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne Victoria 3004 Australia.
Adv Sci (Weinh). 2020 Jan 10;7(6):1902650. doi: 10.1002/advs.201902650. eCollection 2020 Mar.
Particle-based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal-phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single-cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.
基于颗粒的肺部给药在递送可吸入治疗药物用于局部或全身应用方面具有巨大潜力。设计具有增强空气动力学性质的颗粒可以改善肺部分布和沉积,从而提高封装的吸入药物的疗效。本研究描述了金属酚醛胶囊作为小分子药物和大分子药物在肺细胞系、人肺模型和小鼠中的肺部载体的纳米工程和雾化。通过在牺牲模板上重复薄膜沉积来增加胶囊壳厚度(从约100纳米增加到200纳米,增量约为50纳米)来调节空气动力学直径,可以精确控制胶囊在人肺模型中的沉积,这对应于随着空气动力学直径增加,从肺泡区域向支气管的转移。如在小鼠气管内给药后评估所示,这些胶囊具有生物相容性和可生物降解性,在20小时后肺部有超过85%的胶囊,但30天后剩余不到4%,且不会引起肺部炎症或毒性。使用质谱细胞术对肺消化物进行单细胞分析表明,主要与肺泡巨噬细胞相关,超过90%的胶囊与细胞不相关。这些胶囊易于雾化、具有装载能力、可调节的空气动力学性质、高生物相容性和可生物降解性,使其成为可控肺部给药的有吸引力的载体。