From the Department of Orthopedic Surgery, Division of Hand Surgery, Mayo Clinic; the Department of Plastic, Reconstructive, and Hand Surgery, Erasmus Medical Center 's-Gravendijkwal; the Department of Plastic and Reconstructive Surgery, Radboudumc University Hospital; and the Xpert Clinic for Hand and Wrist Surgery.
Plast Reconstr Surg. 2020 Jun;145(6):1442-1450. doi: 10.1097/PRS.0000000000006818.
Processed nerve allografts are a promising alternative to nerve autografts, providing an unlimited, readily available supply and avoiding donor-site morbidity and the need for immunosuppression. Currently, clinically available nerve allografts do not provide satisfactory results for motor reconstruction. This study evaluated motor recovery after reconstruction of a long nerve gap using a processed nerve allograft and the influence of storage techniques.
Nerve allografts were decellularized using elastase and detergents and stored at either 4° or -80°C. In 36 New Zealand White rabbits, a 3-cm peroneal nerve gap was repaired with either an autograft (group 1, control) or a cold-stored (group 2) or frozen-stored (group 3) processed nerve allograft. Nerve recovery was evaluated using longitudinal ultrasound measurements, electrophysiology (compound muscle action potentials), isometric tetanic force, wet muscle weight, and histomorphometry after 24 weeks.
Longitudinal ultrasound measurements showed that the cold-stored allograft provided earlier regeneration than the frozen-stored allograft. Furthermore, ultrasound showed significantly inferior recovery in group 3 than in both other groups (p < 0.05). Muscle weight and isometric tetanic force showed similar outcomes in the autograft and cold-stored allograft groups [p = 0.096 (muscle weight) and p = 0.286 (isometric tetanic force)], and confirmed the inferiority of the frozen-stored allograft to the autograft [p < 0.01 (muscle weight) and p = 0.02 (isometric tetanic force)].
Frozen storage of the nerve allograft significantly impairs functional recovery and should be avoided. The cold-stored optimized nerve allograft yields functional recovery similar to the gold standard autograft in the reconstruction of a 3-cm motor nerve defect. Future studies should focus on further improvement of the nerve allograft.
处理过的同种异体神经是自体神经移植物的一种很有前途的替代物,它提供了无限的、现成的供应,避免了供体部位的发病率和对免疫抑制的需求。目前,临床可用的同种异体神经移植物在运动重建方面的效果并不理想。本研究评估了使用处理过的同种异体神经移植物重建长神经间隙后的运动恢复情况,以及储存技术的影响。
使用弹性蛋白酶和去污剂对神经移植物进行脱细胞处理,并在 4°C 或-80°C 下储存。在 36 只新西兰白兔中,使用自体移植物(第 1 组,对照组)或冷储存(第 2 组)或冷冻储存(第 3 组)处理过的同种异体神经移植物修复 3cm 腓肠神经间隙。在 24 周后,通过纵向超声测量、电生理学(复合肌肉动作电位)、等长强直收缩力、湿重肌肉重量和组织形态计量学评估神经恢复情况。
纵向超声测量结果显示,冷储存同种异体移植物比冷冻储存同种异体移植物更早提供再生。此外,超声显示第 3 组的恢复明显不如其他两组(p < 0.05)。肌肉重量和等长强直收缩力在自体移植物和冷储存同种异体移植物组中显示出相似的结果[p = 0.096(肌肉重量)和 p = 0.286(等长强直收缩力)],并且证实冷冻储存同种异体移植物不如自体移植物[p < 0.01(肌肉重量)和 p = 0.02(等长强直收缩力)]。
冷冻储存同种异体神经移植物显著损害功能恢复,应避免使用。冷储存优化的同种异体神经移植物在重建 3cm 运动神经缺损方面,其功能恢复与金标准自体移植物相似。未来的研究应重点进一步改善同种异体神经移植物。