Suppr超能文献

SingleCellSignalR:从单细胞转录组学推断细胞间网络。

SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics.

机构信息

Institut de Recherche en Cancérologie de Montpellier, Inserm, F-34298 Montpellier, France.

Institut régional du Cancer Montpellier, F-34298 Montpellier, France.

出版信息

Nucleic Acids Res. 2020 Jun 4;48(10):e55. doi: 10.1093/nar/gkaa183.

Abstract

Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.

摘要

单细胞转录组学为推断细胞网络中的配体-受体 (LR) 相互作用提供了前所未有的机会。我们引入了一个新的、经过精心整理的 LR 数据库和一个新的正则化分数来进行这种推断。我们首次尝试评估预测的 LR 相互作用的置信度,并表明我们的正则化分数在控制假阳性的同时优于其他评分方案。SingleCellSignalR 作为一个开放访问的 R 包实现,适用于入门级用户,并可从 https://github.com/SCA-IRCM 获得。分析结果以各种表格和图形格式呈现。例如,我们提供了一个集成所有细胞间相互作用的独特网络视图,以及一个将受体与表达的细胞内途径相关联的函数。对相关工具进行了详细比较。在各种示例中,我们在小鼠表皮数据上展示了 SingleCellSignalR,并发现了从外部到基底层的定向通信结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/7261168/1a0fc750e6a7/gkaa183fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验