Suppr超能文献

亚稳岩盐氧化物介导合成用于具有创纪录功率密度的长寿命可充电锌空气电池的高密度双保护M@NC

Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc-Air Batteries with Record Power Density.

作者信息

Tang Tang, Jiang Wen-Jie, Liu Xiao-Zhi, Deng Jun, Niu Shuai, Wang Bin, Jin Shi-Feng, Zhang Qiang, Gu Lin, Hu Jin-Song, Wan Li-Jun

机构信息

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Am Chem Soc. 2020 Apr 15;142(15):7116-7127. doi: 10.1021/jacs.0c01349. Epub 2020 Apr 1.

Abstract

Creating high-density durable bifunctional active sites in an air electrode is essential but still challenging for a long-life rechargeable zinc-air battery with appealing power density. Herein, we discover a general strategy mediated by metastable rock salt oxides for achieving high-density well-defined transition-metal nanocrystals encapsulated in N-doped carbon shells (M@NC) which are anchored on a substrate by a porous carbon network as highly active and durable bifunctional catalytic sites. Small-size (15 ± 5 nm) well-dispersed CoFe@NC in a high density (metal loading up to 54.0 wt %) offers the zinc-air battery a record power density of 423.7 mW cm. The dual protection from the complete graphitic carbon shells and the anchoring of the outer carbon network make CoFe@NC chemically and mechanically durable, giving the battery a long cycling life. Systematic in-situ temperature-dependent characterizations as well as DFT modeling rationalize the rock salt oxide-mediated process and its indispensable role in achieving high-density nanosized M@NC. These findings open up opportunities for designing efficient electrocatalysts for high-performance Zn-air batteries and diverse energy devices.

摘要

在空气电极中创建高密度耐用双功能活性位点对于具有诱人功率密度的长寿命可充电锌空气电池至关重要,但仍具有挑战性。在此,我们发现了一种由亚稳岩盐氧化物介导的通用策略,用于实现封装在氮掺杂碳壳(M@NC)中的高密度明确过渡金属纳米晶体,这些纳米晶体通过多孔碳网络锚定在基底上,作为高活性和耐用的双功能催化位点。小尺寸(15±5nm)且高密度分散(金属负载量高达54.0wt%)的CoFe@NC为锌空气电池提供了创纪录的423.7mW cm的功率密度。完整石墨碳壳的双重保护以及外部碳网络的锚固使CoFe@NC在化学和机械方面都很耐用,赋予电池长循环寿命。系统的原位温度相关表征以及DFT建模阐明了岩盐氧化物介导的过程及其在实现高密度纳米尺寸M@NC中的不可或缺作用。这些发现为设计用于高性能锌空气电池和各种能量装置的高效电催化剂开辟了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验