Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America.
Current address, Integrated DNA Technologies, Coralville, Iowa, United States of America.
PLoS Genet. 2020 Mar 20;16(3):e1008650. doi: 10.1371/journal.pgen.1008650. eCollection 2020 Mar.
Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region.
干细胞系统对于极化组织的发育和维持至关重要。细胞间信号通路控制着干细胞系统,其中龛细胞向干细胞发出信号,以维持干细胞命运/自我更新并抑制分化。在秀丽隐杆线虫的生殖系中,GLP-1 Notch 信号指定干细胞命运,利用序列特异性 DNA 结合蛋白 LAG-1 来实施转录反应。我们采用了一种全面的全基因组方法来鉴定 GLP-1 信号的转录靶标。我们期望直接受 LAG-1 结合的基因,从 ChIP-seq 实验中鉴定,与需要 GLP-1 信号来积累 RNA 的基因,从 RNA-seq 分析中鉴定,这两个基因的交集是 GLP-1 信号的主要反应靶标。此外,我们进行了时间过程转录组学分析,在生长素诱导的 LAG-1 降解后,以区分 RNA 水平是 GLP-1 信号的主要或次要反应的基因。令人惊讶的是,只有 lst-1 和 sygl-1,生殖系中 GLP-1 的两个已知靶标,符合这些标准,这表明这两个基因是 GLP-1 Notch 的主要反应靶标,并且可能是唯一的生殖系 GLP-1 信号蛋白编码转录靶标,用于介导干细胞命运。此外,根据它们在失去 LAG-1 后的时间、缺乏 LAG-1 ChIP-seq 峰以及它们的 glp-1 依赖性 mRNA 积累可以通过 lst-1 和 sygl-1 活性的要求来解释,确定了三个次要反应基因。此外,我们的分析还表明,主要反应基因 lst-1 和 sygl-1 的功能可以解释 glp-1 依赖性 FBF-2 峰蛋白积累,这促进了干细胞命运,并在一定程度上限制了 LAG-1 积累到干细胞区域。