Suppr超能文献

生殖干细胞系统生物学。

Biology of the Germline Stem Cell System.

机构信息

Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016

and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110

出版信息

Genetics. 2019 Dec;213(4):1145-1188. doi: 10.1534/genetics.119.300238.

Abstract

Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in , the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. is a powerful model for understanding germline stem cells and stem cell biology.

摘要

干细胞系统调节组织发育和维持。生殖干细胞系统对于动物繁殖至关重要,通过对配子产生的影响来控制后代的时间和数量。在这篇综述中,我们首先与其他生物体的干细胞系统进行了一般性比较,然后介绍了我们目前对生殖干细胞系统的理解。与 的典型体细胞发育和成年体细胞数量停滞形成对比的是,生殖干细胞系统具有可变的分裂模式,并且该系统在幼虫发育、早期成年高峰期繁殖和与年龄相关的衰退之间存在差异。我们讨论了干细胞系统的细胞和发育生物学,以及 Notch 调控的遗传网络,该网络控制着在成年和幼虫阶段在最佳实验室条件下发生的干细胞命运和减数分裂发育之间的关键决策。然后,我们讨论了干细胞系统对环境干扰和衰老的反应。一个反复出现的区别是控制干细胞命运的过程和控制细胞周期调节的过程。 是理解生殖干细胞和干细胞生物学的强大模型。

相似文献

1
Biology of the Germline Stem Cell System.
Genetics. 2019 Dec;213(4):1145-1188. doi: 10.1534/genetics.119.300238.
2
Analysis of the C. elegans Germline Stem Cell Pool.
Methods Mol Biol. 2017;1463:1-33. doi: 10.1007/978-1-4939-4017-2_1.
3
Scratching the niche that controls Caenorhabditis elegans germline stem cells.
Semin Cell Dev Biol. 2009 Dec;20(9):1107-13. doi: 10.1016/j.semcdb.2009.09.005. Epub 2009 Sep 16.
4
Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in Caenorhabditis elegans.
Genetics. 2016 Mar;202(3):1085-103. doi: 10.1534/genetics.115.185678. Epub 2016 Jan 12.
6
Germline stem cells and their regulation in the nematode Caenorhabditis elegans.
Adv Exp Med Biol. 2013;786:29-46. doi: 10.1007/978-94-007-6621-1_3.
7
A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans.
Nature. 2002 Jun 6;417(6889):660-3. doi: 10.1038/nature754. Epub 2002 May 22.
8
Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans.
Genetics. 2015 Sep;201(1):167-84. doi: 10.1534/genetics.115.178061. Epub 2015 Jul 8.
9
Cell cycle features of C. elegans germline stem/progenitor cells vary temporally and spatially.
Dev Biol. 2016 Jan 1;409(1):261-271. doi: 10.1016/j.ydbio.2015.10.031. Epub 2015 Nov 11.

引用本文的文献

1
Notch activity is modulated by the aGPCR Latrophilin binding the DSL ligand in C. elegans.
Nat Commun. 2025 Jul 12;16(1):6461. doi: 10.1038/s41467-025-61730-0.
2
A stress-dependent postembryonic role for the core CPA factor CFIM-1 in germline integrity.
bioRxiv. 2025 Jul 11:2025.07.01.662614. doi: 10.1101/2025.07.01.662614.
3
Notch controls APC/C to enable accumulation of chromatin regulators in germline stem cells from .
Sci Adv. 2025 May 30;11(22):eadu8572. doi: 10.1126/sciadv.adu8572.
4
Conserved components of the macroautophagy machinery in Caenorhabditis elegans.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyaf007.
5
Mediator-29 limits Caenorhabditis elegans fecundity.
Genetics. 2025 May 8;230(1). doi: 10.1093/genetics/iyaf051.
6
Intestinal RICT-1 regulates the larval germline progenitor pool via the vitellogenin VIT-3 in .
bioRxiv. 2025 Jan 9:2025.01.08.632040. doi: 10.1101/2025.01.08.632040.
8
In situ quantification of ribosome number by electron tomography.
J Microsc. 2025 Sep;299(3):212-227. doi: 10.1111/jmi.13380. Epub 2025 Jan 15.
9
A higher order PUF complex is central to regulation of C. elegans germline stem cells.
Nat Commun. 2025 Jan 2;16(1):123. doi: 10.1038/s41467-024-55526-x.
10
Mechano-regulation of germline development, maintenance, and differentiation.
BBA Adv. 2024 Nov 30;6:100127. doi: 10.1016/j.bbadva.2024.100127. eCollection 2024.

本文引用的文献

1
TOR Signaling in Development, Metabolism, and Aging.
Genetics. 2019 Oct;213(2):329-360. doi: 10.1534/genetics.119.302504.
2
The G2-to-M Transition Is Ensured by a Dual Mechanism that Protects Cyclin B from Degradation by Cdc20-Activated APC/C.
Dev Cell. 2019 Nov 4;51(3):313-325.e10. doi: 10.1016/j.devcel.2019.09.005. Epub 2019 Oct 3.
3
The Transgenic Toolbox.
Genetics. 2019 Aug;212(4):959-990. doi: 10.1534/genetics.119.301506.
4
AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway.
PLoS Biol. 2019 Jun 5;17(6):e3000309. doi: 10.1371/journal.pbio.3000309. eCollection 2019 Jun.
5
Sexual dimorphism of niche architecture and regulation of the germline stem cell pool.
Mol Biol Cell. 2019 Jul 1;30(14):1757-1769. doi: 10.1091/mbc.E19-03-0164. Epub 2019 May 8.
6
Rapid population-wide declines in stem cell number and activity during reproductive aging in .
Development. 2019 Apr 23;146(8):dev173195. doi: 10.1242/dev.173195.
7
Developmental Control of the Cell Cycle: Insights from .
Genetics. 2019 Mar;211(3):797-829. doi: 10.1534/genetics.118.301643.
9
Ectopic Germ Cells Can Induce Niche-like Enwrapment by Neighboring Body Wall Muscle.
Curr Biol. 2019 Mar 4;29(5):823-833.e5. doi: 10.1016/j.cub.2019.01.056. Epub 2019 Feb 21.
10
Function and Evolution of Nematode RNAi Pathways.
Noncoding RNA. 2019 Jan 15;5(1):8. doi: 10.3390/ncrna5010008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验