Suppr超能文献

仅用 15%的订书钉链组装 DNA 折纸中国结。

Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.

机构信息

Hunan University of Medicine, School of Pharmaceutical Science, Huaihua, 418000, P. R. China.

Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.

出版信息

Chembiochem. 2020 Aug 3;21(15):2132-2136. doi: 10.1002/cbic.202000106. Epub 2020 Apr 9.

Abstract

As a giant leap in DNA self-assembly, DNA origami has exhibited an unprecedented ability to construct nanostructures with arbitrary shapes and sizes. In typical DNA origami, hundreds of short DNA staple strands fold a long, single-stranded (ss) DNA scaffold cooperatively into designed nanostructures. However, large numbers of DNA strands are expensive and would hinder applications such as pharmaceutical investigations because of the complicated components. Therefore, one challenge is how to reduce the number of staple strands needed to construct DNA origami. For a DNA origami structure, the scale-free folding pattern of the scaffold strand is determined by staple strands at the branching vertexes. Simple duplex regions help to define the size-related features of the origami geometry. In this study, we hypothesized that a scaffold strand can be correctly folded into a designed topology by using only staple strands involved in branching vertexes. After assembly, any remaining, flexible, single-stranded regions of the scaffold could be converted into rigid duplexes by DNA polymerase to achieve the designed geometric structures. To demonstrate the concept, we used only 18 staple strands (covering 15 % of the scaffold strand) to assemble a porous DNA nanostructure, which was visualized by atomic force microscopy (AFM). This study helps understanding of the role of cooperativity in origami folding, and provides a cost-effective approach for small-scale prototyping DNA origami.

摘要

作为 DNA 自组装的巨大飞跃,DNA 折纸术展现出了构建具有任意形状和大小的纳米结构的前所未有的能力。在典型的 DNA 折纸术中,数百个短的 DNA 订书钉链协同地将一个长的单链(ss)DNA 支架折叠成设计的纳米结构。然而,大量的 DNA 链非常昂贵,并且由于复杂的组成部分,会阻碍药物研究等应用。因此,一个挑战是如何减少构建 DNA 折纸术所需的订书钉链的数量。对于 DNA 折纸术结构,支架链的无标度折叠模式由分支顶点处的订书钉链决定。简单的双链区域有助于定义折纸几何形状的大小相关特征。在这项研究中,我们假设支架链可以仅通过参与分支顶点的订书钉链正确地折叠成设计的拓扑结构。组装后,支架的任何剩余的、灵活的单链区域都可以通过 DNA 聚合酶转化为刚性双链体,以实现设计的几何结构。为了证明这一概念,我们仅使用了 18 个订书钉链(覆盖支架链的 15%)来组装多孔 DNA 纳米结构,并用原子力显微镜(AFM)对其进行了可视化。这项研究有助于理解协同作用在折纸术折叠中的作用,并为小规模原型制作 DNA 折纸术提供了一种具有成本效益的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验