Suppr超能文献

利用联邦数据源和 Varian Learning Portal 框架来训练神经网络模型,实现自动器官分割。

Using federated data sources and Varian Learning Portal framework to train a neural network model for automatic organ segmentation.

机构信息

Varian Medical Systems Finland Oy, Paciuksenkatu 21, FI-00270 Helsinki, Finland.

Varian Medical Systems Deutschland GmbH, Alsfelder Straße 6, 64289 Darmstadt, Germany.

出版信息

Phys Med. 2020 Apr;72:39-45. doi: 10.1016/j.ejmp.2020.03.011.

Abstract

PURPOSE

In this study we trained a deep neural network model for female pelvis organ segmentation using data from several sites without any personal data sharing. The goal was to assess its prediction power compared with the model trained in a centralized manner.

METHODS

Varian Learning Portal (VLP) is a distributed machine learning (ML) infrastructure enabling privacy-preserving research across hospitals from different regions or countries, within the framework of a trusted consortium. Such a framework is relevant in the case when there is a high level of trust among the participating sites, but there are legal restrictions which do not allow the actual data sharing between them. We trained an organ segmentation model for the female pelvic region using the synchronous data distributed framework provided by the VLP.

RESULTS

The prediction performance of the model trained using the federated framework offered by VLP was on the same level as the performance of the model trained in a centralized manner where all training data was pulled together in one centre.

CONCLUSIONS

VLP infrastructure can be used for GPU-based training of a deep neural network for organ segmentation for the female pelvic region. This organ segmentation instance is particularly difficult due to the high variation in the organs' shape and size. Being able to train the model using data from several clinics can help, for instance, by exposing the model to a larger range of data variations. VLP framework enables such a distributed training approach without sharing protected health information.

摘要

目的

本研究使用来自多个站点的数据,无需共享任何个人数据,训练了一个用于女性骨盆器官分割的深度神经网络模型。目的是评估其与集中式训练模型相比的预测能力。

方法

Varian Learning Portal(VLP)是一种分布式机器学习(ML)基础设施,允许在受信任的联盟框架内,在来自不同地区或国家的医院之间进行隐私保护研究。在参与站点之间存在高度信任,但存在法律限制不允许它们之间实际共享数据的情况下,这种框架是相关的。我们使用 VLP 提供的同步数据分发框架,针对女性骨盆区域训练了一个器官分割模型。

结果

使用 VLP 提供的联邦框架训练的模型的预测性能与集中式训练模型的性能相当,在集中式训练中,所有训练数据都集中在一个中心。

结论

VLP 基础设施可用于基于 GPU 的女性骨盆区域器官分割深度神经网络的训练。由于器官形状和大小的高度变化,这个器官分割实例特别困难。使用来自多个诊所的数据来训练模型可以帮助模型暴露于更大范围的数据变化。VLP 框架允许在不共享受保护健康信息的情况下进行这种分布式训练方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验