Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, Paris, 75005, France.
BMC Bioinformatics. 2020 Mar 20;21(1):120. doi: 10.1186/s12859-020-3453-6.
In unsupervised learning and clustering, data integration from different sources and types is a difficult question discussed in several research areas. For instance in omics analysis, dozen of clustering methods have been developed in the past decade. When a single source of data is at play, hierarchical clustering (HC) is extremely popular, as a tree structure is highly interpretable and arguably more informative than just a partition of the data. However, applying blindly HC to multiple sources of data raises computational and interpretation issues.
We propose mergeTrees, a method that aggregates a set of trees with the same leaves to create a consensus tree. In our consensus tree, a cluster at height h contains the individuals that are in the same cluster for all the trees at height h. The method is exact and proven to be [Formula: see text], n being the individuals and q being the number of trees to aggregate. Our implementation is extremely effective on simulations, allowing us to process many large trees at a time. We also rely on mergeTrees to perform the cluster analysis of two real -omics data sets, introducing a spectral variant as an efficient and robust by-product.
Our tree aggregation method can be used in conjunction with hierarchical clustering to perform efficient cluster analysis. This approach was found to be robust to the absence of clustering information in some of the data sets as well as an increased variability within true clusters. The method is implemented in R/C++ and available as an R package named mergeTrees, which makes it easy to integrate in existing or new pipelines in several research areas.
在无监督学习和聚类中,来自不同来源和类型的数据集成是几个研究领域讨论的难题。例如,在组学分析中,过去十年已经开发了数十种聚类方法。当只有单一数据源时,层次聚类 (HC) 非常流行,因为树结构具有高度的可解释性,并且可以说比数据的简单分区提供更多信息。然而,盲目地将 HC 应用于多个数据源会引发计算和解释问题。
我们提出了 mergeTrees,一种聚合具有相同叶子的一组树以创建共识树的方法。在我们的共识树中,高度为 h 的聚类包含所有高度为 h 的树中处于同一聚类的个体。该方法是精确的,并被证明是[公式:见正文],n 是个体,q 是要聚合的树的数量。我们的实现对于模拟非常有效,允许我们一次处理许多大型树。我们还依靠 mergeTrees 对两个真实的组学数据集进行聚类分析,引入了一种谱变体作为高效且稳健的副产品。
我们的树聚合方法可与层次聚类结合使用,以执行高效的聚类分析。该方法被发现对某些数据集缺乏聚类信息以及真实聚类内的变异性增加具有稳健性。该方法在 R/C++ 中实现,并作为一个名为 mergeTrees 的 R 包提供,这使得它易于在几个研究领域中的现有或新管道中集成。