Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA.
Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA.
Prog Neurobiol. 2020 Jun;189:101788. doi: 10.1016/j.pneurobio.2020.101788. Epub 2020 Mar 18.
Behavioral responses to a perceptual stimulus are typically faster with repeated exposure to the stimulus (behavioral priming). This implicit learning mechanism is critical for survival but impaired in a variety of neurological disorders, including Alzheimer's disease. Many studies of the neural bases for behavioral priming have encountered an interesting paradox: in spite of faster behavioral responses, repeated stimuli usually elicit weaker neural responses (repetition suppression). Several neurophysiological models have been proposed to resolve this paradox, but noninvasive techniques for human studies have had insufficient spatial-temporal precision for testing their predictions. Here, we used the unparalleled precision of electrocorticography (ECoG) to analyze the timing and magnitude of task-related changes in neural activation and propagation while patients named novel vs repeated visual objects. Stimulus repetition was associated with faster verbal responses and decreased neural activation (repetition suppression) in ventral occipito-temporal cortex (VOTC) and left prefrontal cortex (LPFC). Interestingly, we also observed increased neural activation (repetition enhancement) in LPFC and other recording sites. Moreover, with analysis of high gamma propagation we observed increased top-down propagation from LPFC into VOTC, preceding repetition suppression. The latter results indicate that repetition suppression and behavioral priming are associated with strengthening of top-down network influences on perceptual processing, consistent with predictive coding models of repetition suppression, and they support a central role for changes in large-scale cortical dynamics in achieving more efficient and rapid behavioral responses.
对感知刺激的行为反应通常随着对刺激的重复暴露而加快(行为启动)。这种内隐学习机制对于生存至关重要,但在包括阿尔茨海默病在内的多种神经障碍中受损。许多对行为启动的神经基础的研究都遇到了一个有趣的悖论:尽管行为反应更快,但重复刺激通常会引起较弱的神经反应(重复抑制)。已经提出了几种神经生理学模型来解决这个悖论,但用于人类研究的非侵入性技术对于测试其预测的空间和时间精度还不够。在这里,我们使用脑电图(ECoG)的无与伦比的精度来分析患者命名新的与重复的视觉物体时,与任务相关的神经激活和传播的时间和幅度的变化。刺激重复与腹侧枕颞皮质(VOTC)和左前额叶皮层(LPFC)中的更快的口头反应和减少的神经激活(重复抑制)相关。有趣的是,我们还观察到 LPFC 和其他记录部位的神经激活增加(重复增强)。此外,通过对高伽马传播的分析,我们观察到 LPFC 到 VOTC 的自上而下的传播增加,先于重复抑制。后一种结果表明,重复抑制和行为启动与加强自上而下的网络对感知处理的影响有关,这与重复抑制的预测编码模型一致,并且它们支持在实现更有效和快速的行为反应时,在大规模皮质动力学变化中起核心作用。