Suppr超能文献

开发并验证用于预测肝细胞癌预后的 14 基因标志物。

Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma.

机构信息

Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China.

Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China.

出版信息

Genomics. 2020 Jul;112(4):2763-2771. doi: 10.1016/j.ygeno.2020.03.013. Epub 2020 Mar 18.

Abstract

Worldwide, hepatocellular carcinoma (HCC) remains a crucial medical problem. Precise and concise prognostic models are urgently needed because of the intricate gene variations among liver cancer cells. We conducted this study to identify a prognostic gene signature with biological significance. We applied two algorithms to generate differentially expressed genes (DEGs) between HCC and normal specimens in The Cancer Genome Atlas cohort (training set included) and performed enrichment analyses to expound on their biological significance. A protein-protein interactions network was established based on the STRING online tool. We then used Cytoscape to screen hub genes in crucial modules. A multigene signature was constructed by Cox regression analysis of hub genes to stratify the prognoses of HCC patients in the training set. The prognostic value of the multigene signature was externally validated in two other sets from Gene Expression Omnibus (GSE14520 and GSE76427), and its role in recurrence prediction was also investigated. A total of 2000 DEGs were obtained, including 1542 upregulated genes and 458 downregulated genes. Subsequently, we constructed a 14-gene signature on the basis of 56 hub genes, which was a good predictor of overall survival. The prognostic signature could be replicated in GSE14520 and GSE76427. Moreover, the 14-gene signature could be applied for recurrence prediction in the training set and GSE14520. In summary, the 14-gene signature extracted from hub genes was involved in some of the HCC-related signalling pathways; it not only served as a predictive signature for HCC outcome but could also be used to predict HCC recurrence.

摘要

在全球范围内,肝细胞癌 (HCC) 仍然是一个重要的医学问题。由于肝癌细胞中存在复杂的基因变异,因此迫切需要精确和简洁的预后模型。我们进行了这项研究,以确定具有生物学意义的预后基因特征。我们应用了两种算法来生成癌症基因组图谱队列中 HCC 和正常标本之间的差异表达基因 (DEGs)(包括训练集),并进行富集分析以阐述其生物学意义。基于 STRING 在线工具建立了蛋白质-蛋白质相互作用网络。然后,我们使用 Cytoscape 在关键模块中筛选枢纽基因。通过对枢纽基因的 Cox 回归分析构建多基因特征,以对训练集中 HCC 患者的预后进行分层。该多基因特征的预后价值在另外两个来自基因表达综合数据库 (GSE14520 和 GSE76427) 的数据集进行了外部验证,并研究了其在复发预测中的作用。共获得 2000 个 DEGs,包括 1542 个上调基因和 458 个下调基因。随后,我们基于 56 个枢纽基因构建了一个 14 基因特征,该特征是总体生存的良好预测指标。该预后特征可以在 GSE14520 和 GSE76427 中复制。此外,该 14 基因特征可用于训练集和 GSE14520 中的复发预测。总之,从枢纽基因中提取的 14 基因特征涉及一些 HCC 相关的信号通路;它不仅是 HCC 结局的预测特征,还可用于预测 HCC 复发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验