Suppr超能文献

单分子成像技术揭示了活细胞中转录和 DNA 修复机制之间的分子偶联。

Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells.

机构信息

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.

Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.

出版信息

Nat Commun. 2020 Mar 20;11(1):1478. doi: 10.1038/s41467-020-15182-3.

Abstract

The Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins. We find that ATP hydrolysis by UvrA governs formation and disassembly of the Mfd-UvrA complex. Further, Mfd-UvrA-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition are impaired in successful handoff. Our single-molecule dissection of interactions of Mfd with its partner proteins inside live cells shows that the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner.

摘要

大肠杆菌转录修复偶联因子 Mfd 置换停滞的 RNA 聚合酶,并将停滞位点递送至核苷酸切除修复因子 UvrAB 进行损伤检测。这种从 RNA 聚合酶到 UvrA 的交接是否通过 Mfd-UvrA-UvrB 复合物或细胞内的其他反应中间物发生尚不清楚。在这里,我们在活跃生长的细胞中可视化 Mfd,并确定忠实招募核苷酸切除修复蛋白的催化要求。我们发现 UvrA 的 ATP 水解控制着 Mfd-UvrA 复合物的形成和解体。此外,在成功交接中,UvrB 突变体在 DNA 加载和损伤识别方面的缺陷形成的 Mfd-UvrA-UvrB 复合物受到损害。我们对 Mfd 与其在活细胞内的伴侣蛋白相互作用的单分子剖析表明,Mfd 的解离与 UvrB 的成功加载紧密耦合,为 UvrB 以链特异性方式加载提供了一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f536/7083905/73050f870ff2/41467_2020_15182_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验