Suppr超能文献

基于信息的人体肌肉反应与行走路径关系分析。

Information-based analysis of the relation between human muscle reaction and walking path.

机构信息

School of Engineering, Monash University, Selangor, Malaysia.

Sunway University Business School, Sunway University, Selangor, Malaysia.

出版信息

Technol Health Care. 2020;28(6):675-684. doi: 10.3233/THC-192034.

Abstract

BACKGROUND

Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement.

OBJECTIVE

In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement.

METHOD

Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content.

RESULTS

Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path.

CONCLUSION

The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.

摘要

背景

行走是人体的重要动作之一。为此,人脑通过神经系统与腿部肌肉进行交流。根据行走路径,腿部肌肉的作用方式不同。因此,腿部肌肉的活动与运动路径之间应该存在一定的关系。

目的

为了解决这个问题,我们分析了腿部肌肉活动与运动路径变化之间的关系。

方法

由于肌电图(EMG)信号是肌肉活动的特征,而运动路径具有复杂的结构,我们使用熵分析来连接它们的结构。计算 EMG 信号和行走路径的香农熵,以关联它们的信息量。

结果

基于获得的结果,在信息含量更大的路径上行走会导致 EMG 信号中的信息含量更大,这一结果得到了统计分析结果的支持。这使我们能够分析肌肉活动与行走路径之间的关系。

结论

本研究中采用的分析方法可用于研究大脑或心脏反应与行走路径之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验