Montes Daniel, Henao Jonathan, Taborda Esteban A, Gallego Jaime, Cortés Farid B, Franco Camilo A
Grupo de Investigación en Fenómenos de Superficie Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia.
Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
ACS Omega. 2020 Mar 3;5(10):5085-5097. doi: 10.1021/acsomega.9b04041. eCollection 2020 Mar 17.
The main objective of this study is to evaluate the effect of the textural properties and surface chemical nature of silica nanoparticles obtained from different synthesis routes and silicon precursors, on their interactions with asphaltenes and further viscosity reduction of heavy crude oil (HO). Four different SiO nanoparticles were used, namely, commercial fumed silica nanoparticles (CSNs) and three in-house-synthesized nanoparticles (named based on the silicon source) modifying the silicon precursor: sodium silicate (SNSS), tetraethylorthosilicate (TEOS) (SNT), and rice husk (SNRH). The nanomaterials were characterized through dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, N physisorption ( ), atomic force microscopy (AFM), and X-ray photoelectron (XP) spectroscopy (XPS). The adsorption of asphaltenes over the different nanoparticles was evaluated at a concentration of 1000 mg·L in toluene. The asphaltene-nanoparticle interactions are closely related to several textural properties, such as roughness, surface area, and hydrodynamic diameter, as well as the surface chemical nature of the materials. The results in the textural characterization exhibited that the sizes of the nanoparticles from TEM ranged between 6.9 and 11.5 nm. Nevertheless, the standard deviation of the measurements showed that the sizes are statistically similar. Inversely, the hydrodynamic diameter changed, affecting the surface silanol group's availability due to a hindering effect on functional groups as the hydrodynamic size of the material increased. The rheological measurements were performed at a fixed nanoparticle dosage of 1000 mg·L and showed that the trend of the degree of viscosity reduction (DVR) was CSN > SNT > SNSS > SNRH with the highest value yielding at 30%. The results of DVR are in accordance with the nanoparticles' adsorptive capacity as higher values were obtained with the material that leads to a higher amount of adsorbed asphaltenes. Also, the oxygen amount related to silanol groups, estimated by the XPS analysis, showed a direct relation regarding adsorption capacity and further HO viscosity reduction.
本研究的主要目的是评估通过不同合成路线和硅前驱体制备的二氧化硅纳米颗粒的纹理特性和表面化学性质,对其与沥青质相互作用以及进一步降低重质原油(HO)粘度的影响。使用了四种不同的SiO纳米颗粒,即商业气相二氧化硅纳米颗粒(CSNs)和三种内部合成的纳米颗粒(根据硅源命名),它们对硅前驱体进行了改性:硅酸钠(SNSS)、正硅酸四乙酯(TEOS)(SNT)和稻壳(SNRH)。通过动态光散射(DLS)、透射电子显微镜(TEM)、傅里叶变换红外(FTIR)光谱、N物理吸附( )、原子力显微镜(AFM)和X射线光电子能谱(XPS)对纳米材料进行了表征。在甲苯中1000 mg·L的浓度下评估了沥青质在不同纳米颗粒上的吸附情况。沥青质与纳米颗粒的相互作用与多种纹理特性密切相关,如粗糙度、表面积和流体动力学直径,以及材料的表面化学性质。纹理表征结果表明,TEM测得的纳米颗粒尺寸在6.9至11.5 nm之间。然而,测量的标准偏差表明这些尺寸在统计学上是相似的。相反,流体动力学直径发生了变化,随着材料流体动力学尺寸的增加,由于对官能团的阻碍作用,影响了表面硅醇基团的可用性。流变学测量在固定的纳米颗粒剂量1000 mg·L下进行,结果表明粘度降低程度(DVR)的趋势为CSN > SNT > SNSS > SNRH,最高值为30%。DVR的结果与纳米颗粒的吸附能力一致,因为导致吸附更多沥青质的材料获得了更高的值。此外,通过XPS分析估计的与硅醇基团相关的氧量显示出与吸附能力以及进一步降低HO粘度的直接关系。