Kazuma Emiko, Lee Minhui, Jung Jaehoon, Trenary Michael, Kim Yousoo
Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.
Department of Chemistry, University of Ulsan, Nam-gu, Ulsan, 44776, Republic of Korea.
Angew Chem Int Ed Engl. 2020 May 11;59(20):7960-7966. doi: 10.1002/anie.202001863. Epub 2020 Apr 6.
Chemical reactions induced by plasmons achieve effective solar-to-chemical energy conversion. However, the mechanism of these reactions, which generate a strong electric field, hot carriers, and heat through the excitation and decay processes, is still controversial. In addition, it is not fully understood which factor governs the mechanism. To obtain mechanistic knowledge, we investigated the plasmon-induced dissociation of a single-molecule strongly chemisorbed on a metal surface, two O species chemisorbed on Ag(110) with different orientations and electronic structures, using a scanning tunneling microscope (STM) combined with light irradiation at 5 K. A combination of quantitative analysis by the STM and density functional theory calculations revealed that the hot carriers are transferred to the antibonding (π*) orbitals of O strongly hybridized with the metal states and that the dominant pathway and reaction yield are determined by the electronic structures formed by the molecule-metal chemical interaction.
等离子体激元引发的化学反应实现了有效的太阳能到化学能的转换。然而,这些通过激发和衰减过程产生强电场、热载流子和热量的反应机制仍存在争议。此外,对于决定该机制的因素尚未完全理解。为了获得机理方面的知识,我们使用扫描隧道显微镜(STM)并结合5K下的光照射,研究了强化学吸附在金属表面的单分子以及两种以不同取向和电子结构化学吸附在Ag(110)上的O物种的等离子体激元诱导解离。STM的定量分析与密度泛函理论计算相结合表明,热载流子转移到与金属态强烈杂化的O的反键(π*)轨道上,并且主导途径和反应产率由分子 - 金属化学相互作用形成的电子结构决定。