Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
Chem Soc Rev. 2020 Apr 21;49(8):2504-2522. doi: 10.1039/c9cs00138g. Epub 2020 Mar 23.
The asymmetric catalytic hydrogenation of olefins is one of the most widely studied and utilised transformations in asymmetric synthesis. This straightforward and atom-economical strategy can provide excellent enantioselectivity for a broad variety of substrates and is widely relevant for both industrial applications and academic research. In many instances the hydrogenation is stereospecific in the regard that the E-Z-geometry of the olefin governs the stereochemistry of the hydrogenation, producing an enantiodivergent outcome. Interestingly, the possibility to hydrogenate E- and Z-isomer mixtures to a single stereoisomer in an enantioconvergent manner has been reported. This avoids the need for synthesis of geometrically pure alkene starting materials and therefore constitutes a significant practical advantage. This review article aims to provide an overview of the different stereochemical outcomes in the hydrogenation of olefins. Although the field is well developed and selectivity models have been proposed for a number of catalytic systems, an organized collection of enantioconvergent results, as opposed to the more common enantiodivergent case, might promote new investigation into these phenomena.
烯烃的不对称催化氢化是不对称合成中研究和应用最广泛的转化之一。这种直接的、原子经济的策略可以为各种底物提供优异的对映选择性,广泛应用于工业应用和学术研究。在许多情况下,氢化是立体特异性的,因为烯烃的 E-Z-几何结构决定了氢化的立体化学,产生了对映体发散的结果。有趣的是,已经报道了以对映体转化的方式将 E-和 Z-异构体混合物氢化成为单一立体异构体的可能性。这避免了合成几何纯烯烃起始原料的需要,因此构成了显著的实际优势。本文综述了烯烃氢化中不同的立体化学结果。尽管该领域已经得到了很好的发展,并且已经为许多催化体系提出了选择性模型,但与更常见的对映体发散情况相反,对映体转化结果的有组织的收集可能会促进对这些现象的新的研究。