Suppr超能文献

人类蛛网膜小梁的空间分布。

Spatial distribution of human arachnoid trabeculae.

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA.

Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.

出版信息

J Anat. 2020 Aug;237(2):275-284. doi: 10.1111/joa.13186. Epub 2020 Mar 23.

Abstract

Traumatic brain injury (TBI) is a common injury modality affecting a diverse patient population. Axonal injury occurs when the brain experiences excessive deformation as a result of head impact. Previous studies have shown that the arachnoid trabeculae (AT) in the subarachnoid space significantly influence the magnitude and distribution of brain deformation during impact. However, the quantity and spatial distribution of cranial AT in humans is unknown. Quantification of these microstructural features will improve understanding of force transfer during TBI, and may be a valuable dataset for microneurosurgical procedures. In this study, we quantify the spatial distribution of cranial AT in seven post-mortem human subjects. Optical coherence tomography (OCT) was used to conduct in situ imaging of AT microstructure across the surface of the human brain. OCT images were segmented to quantify the relative amounts of trabecular structures through a volume fraction (VF) measurement. The average VF for each brain ranged from 22.0% to 29.2%. Across all brains, there was a positive spatial correlation, with VF significantly greater by 12% near the superior aspect of the brain (p < .005), and significantly greater by 5%-10% in the frontal lobes (p < .005). These findings suggest that the distribution of AT between the brain and skull is heterogeneous, region-dependent, and likely contributes to brain deformation patterns. This study is the first to image and quantify human AT across the cerebrum and identify region-dependencies. Incorporation of this spatial heterogeneity may improve the accuracy of computational models of human TBI and enhance understanding of brain dynamics.

摘要

创伤性脑损伤 (TBI) 是一种常见的损伤方式,影响着多样化的患者群体。当大脑因头部撞击而经历过度变形时,就会发生轴突损伤。先前的研究表明,蛛网膜小梁 (AT) 在蛛网膜下腔中的数量和空间分布对撞击过程中大脑变形的幅度和分布有显著影响。然而,人类颅 AT 的数量和空间分布尚不清楚。这些微观结构特征的量化将有助于更好地理解 TBI 中的力传递,并且可能是微神经外科手术的有价值数据集。在这项研究中,我们对 7 名死后人类受试者的颅 AT 空间分布进行了量化。光学相干断层扫描 (OCT) 用于对人脑表面的 AT 微观结构进行原位成像。通过体积分数 (VF) 测量对 OCT 图像进行分割,以量化小梁结构的相对数量。每个大脑的平均 VF 范围从 22.0%到 29.2%。在所有大脑中,存在正空间相关性,VF 在大脑的上侧显著增加了 12%(p<.005),在前额叶显著增加了 5%-10%(p<.005)。这些发现表明,大脑和颅骨之间的 AT 分布是不均匀的、区域依赖性的,并且可能导致大脑变形模式的不同。这项研究首次对大脑进行了成像和量化,并确定了区域依赖性。这种空间异质性的纳入可能会提高人类 TBI 计算模型的准确性,并增强对大脑动力学的理解。

相似文献

1
Spatial distribution of human arachnoid trabeculae.
J Anat. 2020 Aug;237(2):275-284. doi: 10.1111/joa.13186. Epub 2020 Mar 23.
2
Mechanical characterization of the human pia-arachnoid complex.
J Mech Behav Biomed Mater. 2021 Aug;120:104579. doi: 10.1016/j.jmbbm.2021.104579. Epub 2021 May 13.
3
Microstructural Characterization of the Pia-Arachnoid Complex Using Optical Coherence Tomography.
IEEE Trans Med Imaging. 2015 Jul;34(7):1452-1459. doi: 10.1109/TMI.2015.2396527. Epub 2015 Jan 27.
4
Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension.
Fluids Barriers CNS. 2020 Nov 12;17(1):68. doi: 10.1186/s12987-020-00229-w.
5
Micromechanical heterogeneity of the rat pia-arachnoid complex.
Acta Biomater. 2019 Dec;100:29-37. doi: 10.1016/j.actbio.2019.09.044. Epub 2019 Oct 1.
6
The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations.
Neuropathol Appl Neurobiol. 1988 Jan-Feb;14(1):1-17. doi: 10.1111/j.1365-2990.1988.tb00862.x.
7
Optical coherence tomography of cranial dura mater: Microstructural visualization in vivo.
Clin Neurol Neurosurg. 2021 Jan;200:106370. doi: 10.1016/j.clineuro.2020.106370. Epub 2020 Nov 25.
8
Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet.
Biomech Model Mechanobiol. 2016 Oct;15(5):1101-19. doi: 10.1007/s10237-015-0747-0. Epub 2015 Nov 19.
9
Pile driving into the skull and suspending the bridging veins? An undescribed role of arachnoid granulations.
Surg Radiol Anat. 2017 May;39(5):541-545. doi: 10.1007/s00276-016-1745-3. Epub 2016 Sep 19.

引用本文的文献

1
Skull-meninges-brain connectivity and extra-axial brain tumours.
Brain Commun. 2025 Aug 21;7(5):fcaf311. doi: 10.1093/braincomms/fcaf311. eCollection 2025.
2
MR elastography-based detection of impaired skull-brain mechanical decoupling performance in response to repetitive head impacts.
Eur Radiol. 2025 Jun;35(6):3613-3624. doi: 10.1007/s00330-024-11265-7. Epub 2024 Dec 10.
4
Measurement of relative motion of the brain and skull in the mini-pig in-vivo.
J Biomech. 2023 Jul;156:111676. doi: 10.1016/j.jbiomech.2023.111676. Epub 2023 Jun 10.
6
Effects of atlas-based anatomy on modelled light transport in the neonatal head.
Phys Med Biol. 2023 Jul 3;68(13):135019. doi: 10.1088/1361-6560/acd48c.
7
Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension.
Fluids Barriers CNS. 2020 Nov 12;17(1):68. doi: 10.1186/s12987-020-00229-w.

本文引用的文献

1
First visualization of the human subarachnoid space and brain cortex optical coherence tomography.
Ther Adv Neurol Disord. 2019 Apr 11;12:1756286419843040. doi: 10.1177/1756286419843040. eCollection 2019.
2
Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance.
World Neurosurg. 2018 Mar;111:279-290. doi: 10.1016/j.wneu.2017.12.041. Epub 2017 Dec 18.
3
Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet.
Biomech Model Mechanobiol. 2016 Oct;15(5):1101-19. doi: 10.1007/s10237-015-0747-0. Epub 2015 Nov 19.
4
Histology and Morphology of the Brain Subarachnoid Trabeculae.
Anat Res Int. 2015;2015:279814. doi: 10.1155/2015/279814. Epub 2015 May 24.
5
Microstructural Characterization of the Pia-Arachnoid Complex Using Optical Coherence Tomography.
IEEE Trans Med Imaging. 2015 Jul;34(7):1452-1459. doi: 10.1109/TMI.2015.2396527. Epub 2015 Jan 27.
6
White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.
Biomech Model Mechanobiol. 2015 Aug;14(4):877-96. doi: 10.1007/s10237-014-0643-z. Epub 2014 Dec 30.
7
Trends in Traumatic Brain Injury in the U.S. and the public health response: 1995-2009.
J Safety Res. 2012 Sep;43(4):299-307. doi: 10.1016/j.jsr.2012.08.011. Epub 2012 Aug 25.
8
Physiological and histopathological responses following closed rotational head injury depend on direction of head motion.
Exp Neurol. 2011 Jan;227(1):79-88. doi: 10.1016/j.expneurol.2010.09.015. Epub 2010 Sep 25.
9
Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model.
J R Soc Interface. 2010 Aug 6;7(49):1195-204. doi: 10.1098/rsif.2010.0033. Epub 2010 Mar 17.
10
Microscopic morphology and histology of the human meninges.
Morphologie. 2005 Mar;89(284):22-34. doi: 10.1016/s1286-0115(05)83235-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验