Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA, USA.
Nat Methods. 2020 Apr;17(4):430-436. doi: 10.1038/s41592-020-0775-2. Epub 2020 Mar 16.
To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.
为了在纳米尺度原位成像可及基因组,我们开发了三维转座酶可及染色质-光激活定位显微镜分析(3D ATAC-PALM),它将转座酶可及染色质分析与可视化、PALM 超分辨率成像和晶格光片显微镜相结合。通过与寡核苷酸 DNA-荧光原位杂交(FISH)、RNA-FISH 和蛋白质荧光进行多重分析,3D ATAC-PALM 将显微镜和基因组数据连接起来,揭示了包含活性染色质和转录基因的空间分隔的可及染色质域(ACD)。使用这些方法分析遗传扰动细胞,我们证明了基因组结构蛋白 CTCF 可防止可及染色质过度聚集和解压缩 ACD。这些结果突出了 3D ATAC-PALM 作为一种有用的工具,可用于研究基因组的结构和组织机制。