Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
Science. 2018 Oct 26;362(6413). doi: 10.1126/science.aau1783.
The spatial organization of chromatin is pivotal for regulating genome functions. We report an imaging method for tracing chromatin organization with kilobase- and nanometer-scale resolution, unveiling chromatin conformation across topologically associating domains (TADs) in thousands of individual cells. Our imaging data revealed TAD-like structures with globular conformation and sharp domain boundaries in single cells. The boundaries varied from cell to cell, occurring with nonzero probabilities at all genomic positions but preferentially at CCCTC-binding factor (CTCF)- and cohesin-binding sites. Notably, cohesin depletion, which abolished TADs at the population-average level, did not diminish TAD-like structures in single cells but eliminated preferential domain boundary positions. Moreover, we observed widespread, cooperative, multiway chromatin interactions, which remained after cohesin depletion. These results provide critical insight into the mechanisms underlying chromatin domain and hub formation.
染色质的空间组织对于调节基因组功能至关重要。我们报告了一种成像方法,可以在千个单细胞中以千碱基和纳米级分辨率追踪染色质组织,揭示拓扑关联域(TAD)内的染色质构象。我们的成像数据显示,单个细胞中存在具有球状构象和清晰结构域边界的 TAD 样结构。这些边界在细胞间存在差异,在所有基因组位置都以非零概率发生,但在 CTCF 和黏合蛋白结合位点处更为常见。值得注意的是,尽管凝聚素耗竭在群体平均水平上消除了 TAD,但它并没有减少单细胞中的 TAD 样结构,而是消除了优先的结构域边界位置。此外,我们观察到广泛存在的、协同的、多方向的染色质相互作用,即使在凝聚素耗竭后仍然存在。这些结果为染色质域和枢纽形成的机制提供了重要的见解。