Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
Chan Zuckerberg Biohub, San Francisco, CA, USA.
Nat Methods. 2020 May;17(5):524-530. doi: 10.1038/s41592-020-0793-0. Epub 2020 Mar 16.
Intracellular diffusion underlies vital cellular processes. However, it remains difficult to elucidate how an unbound protein diffuses inside the cell with good spatial resolution and sensitivity. Here we introduce single-molecule displacement/diffusivity mapping (SMdM), a super-resolution strategy that enables the nanoscale mapping of intracellular diffusivity through local statistics of the instantaneous displacements of freely diffusing single molecules. We thus show that the diffusion of an average-sized protein in the mammalian cytoplasm and nucleus is spatially heterogeneous at the nanoscale, and that variations in local diffusivity correlate with the ultrastructure of the actin cytoskeleton and the organization of the genome, respectively. SMdM of differently charged proteins further unveils that the possession of positive, but not negative, net charges drastically impedes diffusion, and that the rate is determined by the specific subcellular environments. We thus unveil rich heterogeneities and charge effects in intracellular diffusion at the nanoscale.
细胞内扩散是许多重要细胞过程的基础。然而,要想以良好的空间分辨率和灵敏度阐明未结合蛋白如何在细胞内扩散,仍然颇具挑战。在这里,我们引入了单分子位移/扩散性测绘(SMdM),这是一种超分辨率策略,可通过自由扩散的单分子瞬时位移的局部统计,对细胞质和细胞核内的扩散性进行纳米级别的测绘。因此,我们发现,哺乳动物细胞质和细胞核内的平均大小的蛋白质的扩散在纳米尺度上具有空间异质性,并且局部扩散率的变化分别与肌动蛋白细胞骨架的超微结构和基因组的组织相关。对带不同电荷的蛋白质进行 SMdM 进一步揭示,带正电荷但不带负电荷的净电荷会极大地阻碍扩散,而扩散速率则由特定的亚细胞环境决定。因此,我们揭示了纳米尺度细胞内扩散中的丰富异质性和电荷效应。