Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Biomaterials and Tissue Engineering Lab, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110705. doi: 10.1016/j.msec.2020.110705. Epub 2020 Jan 28.
Articular cartilage has a limited ability for self-repair after injury. Implantation of scaffolds functionalized with bioactive molecules that could induce the migration and chondrogenesis of endogenous mesenchymal stem cells (MSCs) provides a convenient alternative for in-situ cartilage regeneration. In this study, we found the synergistic effects of kartogenin (KGN) and transforming growth factor β3 (TGF-β3) on chondrogenesis of MSCs in vitro, indicating that KGN and TGF-β3 are a good match for cartilage regeneration. Furthermore, we confirmed that KGN promoted the chondrogenesis of MSCs through attenuating the degradation of Runx1, which physically interacted with p-Smad3 in nuclei of MSCs. Meanwhile, we designed an injectable double-crosslinked hydrogel with superior mechanical property and longer support for cartilage regeneration by modifying sodium alginate and gelatin. When loaded with KGN conjugated polyurethane nanoparticles (PN-KGN) and TGF-β3, this hydrogel showed biological functions by the release of KGN and TGF-β3, which promoted the MSC migration and cartilage regeneration in one system. In conclusion, the cell-free hydrogel, along with PN-KGN and TGF-β3, provides a promising strategy for cartilage repair by attracting endogenous MSCs and inducing chondrogenesis of recruited cells in a single-step procedure.
关节软骨在损伤后自我修复的能力有限。植入功能化的支架,这些支架带有生物活性分子,可以诱导内源性间充质干细胞(MSCs)的迁移和软骨分化,为原位软骨再生提供了一种方便的替代方法。在这项研究中,我们发现了 kartogenin(KGN)和转化生长因子β3(TGF-β3)在体外对 MSCs 软骨分化的协同作用,表明 KGN 和 TGF-β3 是软骨再生的良好匹配物。此外,我们证实 KGN 通过减弱与 MSCs 核内 p-Smad3 物理相互作用的 Runx1 的降解,促进 MSCs 的软骨分化。同时,我们通过修饰海藻酸钠和明胶设计了一种具有优越机械性能和更长时间支持软骨再生的可注射双重交联水凝胶。当负载 KGN 缀合的聚氨酯纳米粒子(PN-KGN)和 TGF-β3 时,这种水凝胶通过 KGN 和 TGF-β3 的释放表现出生物功能,从而在一个系统中促进 MSC 的迁移和软骨再生。总之,无细胞水凝胶与 PN-KGN 和 TGF-β3 一起,通过在一个步骤中吸引内源性 MSCs 并诱导募集细胞的软骨分化,为软骨修复提供了一种有前途的策略。