Li Mingjing, Li Fan, Xu Jian, Zhu Li, Xiang Jiang, Zhu Chunquan, Dai Zonghui, Tang Sen, Ouyang Fucheng, Yu Jiawen, Huang Xinwei
Department of Pediatric Orthopedics, Wuhan Fourth Hospital, Wuhan, China.
School of Bioengineering, Chongqing University, Chongqing, China.
Front Bioeng Biotechnol. 2025 Jul 29;13:1606726. doi: 10.3389/fbioe.2025.1606726. eCollection 2025.
Articular cartilage defects are clinically prevalent yet lack effective therapeutic solutions. Recent advancements in acellular cartilage tissue engineering combined with microfracture techniques have shown promising outcomes. Injectable hydrogels have emerged as particularly attractive scaffolds due to their minimally invasive implantation and capacity to conform to irregular cartilage defects. However, their clinical application remains constrained by inadequate mechanical strength and insufficient bioadhesion. In this study, we developed a bioadhesive dynamic hydrogel by integrating catechol-functionalized chitosan with aldehyde-terminated four-arm polyethylene glycol (AF-PEG). When combined with KGN-loaded PLGA/PEG nanoparticles, this hydrogel system enables sustained KGN release while maintaining injectability, self-healing properties, and a 3D porous architecture. Mechanical characterization revealed superior bioadhesion strength (∼1,150 kPa) and compressive modulus (∼195 kPa). The hydrogel demonstrated excellent biocompatibility, significantly promoting bone marrow mesenchymal stem cells (BMSCs) proliferation, migration, and chondrogenic differentiation . evaluations showed superior ICRS and modified O'Driscoll histological scores in defects treated with the KGN-loaded chitosan hydrogels compared to controls. Histological analysis confirmed enriched type II collagen deposition in newly formed cartilage, exhibiting structural organization and integration with host cartilage comparable to natural tissue. This novel KGN-loaded bioadhesive dynamic hydrogel provides an optimized regenerative microenvironment for cartilage repair, demonstrating substantial translational potential for clinical applications.
关节软骨缺损在临床上很常见,但缺乏有效的治疗方案。脱细胞软骨组织工程与微骨折技术的最新进展已显示出有前景的结果。可注射水凝胶因其微创植入以及能够适应不规则软骨缺损的能力而成为特别有吸引力的支架。然而,它们的临床应用仍然受到机械强度不足和生物粘附性不够的限制。在本研究中,我们通过将儿茶酚功能化壳聚糖与醛基封端的四臂聚乙二醇(AF-PEG)整合,开发了一种生物粘附性动态水凝胶。当与负载KGN的PLGA/PEG纳米颗粒结合时,这种水凝胶系统能够实现KGN的持续释放,同时保持可注射性、自愈特性和三维多孔结构。力学表征显示出优异的生物粘附强度(约1150 kPa)和压缩模量(约195 kPa)。该水凝胶表现出优异的生物相容性,显著促进骨髓间充质干细胞(BMSC)的增殖、迁移和软骨分化。评估显示,与对照组相比,用负载KGN的壳聚糖水凝胶治疗的缺损在ICRS和改良的奥德里斯科尔组织学评分方面表现更优。组织学分析证实新形成的软骨中富含II型胶原蛋白沉积,其结构组织以及与宿主软骨的整合与天然组织相当。这种新型的负载KGN的生物粘附性动态水凝胶为软骨修复提供了优化的再生微环境,显示出巨大的临床应用转化潜力。