Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.
Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00123-20.
Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.
革兰氏阴性菌的多重耐药性是一个主要的全球公共卫生威胁。金属β-内酰胺酶(MBLs)针对的是使用最广泛的抗生素类别,包括β-内酰胺类抗生素,包括最新一代的碳青霉烯类抗生素。种间传播使这些酶成为严重的临床威胁,并且没有临床可用的抑制剂。我们展示了来自革兰氏阴性菌的结构未表征的 MBL IMP-13 的晶体结构,该 MBL 在全球临床暴发中被发现,并通过溶液核磁共振波谱和分子动力学模拟来表征其结合。呈现了 apoIMP-13 和与四种临床相关的碳青霉烯类抗生素(多尼培南、厄他培南、亚胺培南和美罗培南)结合的 IMP-13 的晶体结构。活性位点的可塑性和活性位点环,其中色氨酸残基稳定抗生素核心支架,对底物结合机制至关重要。保守的碳青霉烯类支架在 IMP-13 结合中起着最重要的作用,解释了广泛的底物特异性。观察到的可塑性和底物锁定机制为新型金属β-内酰胺酶抑制剂的合理药物设计提供了机会,这在对抗抗生素耐药性方面至关重要。