Suppr超能文献

D179Y 变异型 KPC 酶通过 NMR 揭示的不同构象导致对头孢他啶/阿维巴坦的耐药性和对美罗培南及亚胺培南的敏感性。

Different Conformations Revealed by NMR Underlie Resistance to Ceftazidime/Avibactam and Susceptibility to Meropenem and Imipenem among D179Y Variants of KPC β-Lactamase.

机构信息

Department of Medicine, Case Western Reserve Universitygrid.67105.35 School of Medicine, Cleveland, Ohio, USA.

Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.

出版信息

Antimicrob Agents Chemother. 2022 Apr 19;66(4):e0212421. doi: 10.1128/aac.02124-21. Epub 2022 Mar 21.

Abstract

β-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent β-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC β-lactamases (KPC-2/3 melting temperature [] of 54 to 55°C versus D179Y of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear H/N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.

摘要

β-内酰胺酶介导的对头孢他啶-阿维巴坦(CZA)的耐药性是治疗携带肺炎克雷伯菌碳青霉烯酶(KPC)的革兰氏阴性菌的严重限制。在此,探索了 KPC-2 和 -3 的 D179Y 变体对碳青霉烯类药物的敏感性和对头孢他啶(CAZ)和 CZA 的耐药性的基础。首先,我们通过逆转录 PCR(RT-PCR)证明,实验室大肠杆菌 DH10B 菌株对 CZA 的耐药性不是由于变体酶表达水平增加所致。使用时间分辨质谱法,D179Y 变体与 KPC-2 和 KPC-3 中的亚胺培南(IMI)和美罗培南(MEM)形成了延长的酰-酶复合物,可检测到长达 24 小时,这表明 IMI 和 MEM 作为共价β-内酰胺酶抑制剂的作用大于作为 D179Y KPC-2 和 -3 的底物。野生型(WT)KPC 未观察到 D179Y 变体与 IMI 和 MEM 的这种延长的酰-酶复合物。研究了头孢他啶,并发现 D179Y 变体也形成了酰-酶复合物(1 至 2 小时)。热变性和差示扫描荧光法表明,位置 179 的酪氨酸取代使 KPC β-内酰胺酶不稳定(KPC-2/3 的熔点温度 [T m]为 54 至 55°C,而 D179Y 为 47.5 至 51°C),与 KPC-2 相比,D179Y 蛋白在 318 K 时无序 3%。异核 H/N-异核单量子相干(HSQC)核磁共振(NMR)光谱也表明,与 KPC-2 相比,D179Y 变体部分无序。基于这些观察结果,我们讨论了由于 D179Y 取代导致 Ω 环无序的影响。这种构象变化和整体结构的无序导致了这种意外的表型。

相似文献

5
Reversion of KPC-114 to KPC-2 in ceftazidime-avibactam- resistant/meropenem-susceptible ST11 is related to low mutation rates.
Microbiol Spectr. 2024 Oct 3;12(10):e0117324. doi: 10.1128/spectrum.01173-24. Epub 2024 Aug 27.
7
KPC-2 allelic variants in isolates resistant to ceftazidime-avibactam from Argentina: , , and .
Microbiol Spectr. 2024 Mar 5;12(3):e0411123. doi: 10.1128/spectrum.04111-23. Epub 2024 Feb 6.
8
Exploring avibactam and relebactam inhibition of carbapenemase D179N variant: role of the Ω loop-held deacylation water.
Antimicrob Agents Chemother. 2023 Oct 18;67(10):e0035023. doi: 10.1128/aac.00350-23. Epub 2023 Sep 26.
9
Mechanisms of Resistance Development to Imipenem-Relebactam in KPC-Producing Klebsiella pneumoniae.
Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0091822. doi: 10.1128/aac.00918-22. Epub 2022 Sep 26.

引用本文的文献

1
Impact of the double deletion ΔG242-T243 in KPC-2 in the effectiveness of ceftazidime-avibactam and imipenem-relebactam.
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0191524. doi: 10.1128/aac.01915-24. Epub 2025 May 5.
2
Cefepime-taniborbactam and ceftibuten-ledaborbactam maintain activity against KPC variants that lead to ceftazidime-avibactam resistance.
Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0151124. doi: 10.1128/aac.01511-24. Epub 2025 Feb 10.
4
Reversion of KPC-114 to KPC-2 in ceftazidime-avibactam- resistant/meropenem-susceptible ST11 is related to low mutation rates.
Microbiol Spectr. 2024 Oct 3;12(10):e0117324. doi: 10.1128/spectrum.01173-24. Epub 2024 Aug 27.
5
evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by sequence type 512.
mSphere. 2024 Sep 25;9(9):e0042324. doi: 10.1128/msphere.00423-24. Epub 2024 Aug 22.
7
8
Characterization of a Class A β-Lactamase from (Ftu-1) Belonging to a Unique Subclass toward Understanding AMR.
ACS Bio Med Chem Au. 2023 Feb 8;3(2):174-188. doi: 10.1021/acsbiomedchemau.2c00044. eCollection 2023 Apr 19.
9
Optimal ceftazidime/avibactam dosing exposure against KPC-producing Klebsiella pneumoniae.
J Antimicrob Chemother. 2022 Oct 28;77(11):3130-3137. doi: 10.1093/jac/dkac294.
10
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview.
Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0044722. doi: 10.1128/aac.00447-22. Epub 2022 Aug 18.

本文引用的文献

1
Two β-Lactamase Variants with Reduced Clavulanic Acid Inhibition Display Different Millisecond Dynamics.
Antimicrob Agents Chemother. 2021 Jul 16;65(8):e0262820. doi: 10.1128/AAC.02628-20.
2
Molecular analysis of clinical isolates of ceftazidime-avibactam-resistant Klebsiella pneumoniae.
Clin Microbiol Infect. 2021 Jul;27(7):1040.e1-1040.e6. doi: 10.1016/j.cmi.2021.03.001. Epub 2021 Mar 26.
3
Monitoring protein-metal binding by F NMR - a case study with the New Delhi metallo-β-lactamase 1.
RSC Med Chem. 2020 Feb 21;11(3):387-391. doi: 10.1039/c9md00416e. eCollection 2020 Mar 1.
5
6
A novel potent metal-binding NDM-1 inhibitor was identified by fragment virtual, SPR and NMR screening.
Bioorg Med Chem. 2020 May 1;28(9):115437. doi: 10.1016/j.bmc.2020.115437. Epub 2020 Mar 18.
7
Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase.
Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00123-20.
9
H, C, and N backbone resonance assignments for KPC-2, a class A serine-β-lactamase.
Biomol NMR Assign. 2019 Apr;13(1):139-142. doi: 10.1007/s12104-018-9866-8. Epub 2018 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验