Suppr超能文献

用于帕金森病(PD)分类的生物启发式降维

Bio-inspired dimensionality reduction for Parkinson's disease (PD) classification.

作者信息

Pasha Akram, Latha P H

机构信息

1REVA University, Bengaluru, India.

Sambhram Institute of Technology, Bengaluru, India.

出版信息

Health Inf Sci Syst. 2020 Mar 9;8(1):13. doi: 10.1007/s13755-020-00104-w. eCollection 2020 Dec.

Abstract

Given the demand for developing the efficient Machine Learning (ML) classification models for healthcare data, and the potentiality of Bio-Inspired Optimization (BIO) algorithms to tackle the problem of high dimensional data, we investigate the range of ML classification models trained with the optimal subset of features of PD data set for efficient PD classification. We used two BIO algorithms, Genetic Algorithm (GA) and Binary Particle Swarm Optimization (BPSO), to determine the optimal subset of features of PD data set. The data set chosen for investigation comprises 756 observations (rows or records) taken over 755 attributes (columns or dimensions or features) from 252 PD patients. We employed MaxAbsolute feature scaling method to normalize the data and one hold cross-validation method to avoid biased results. Accordingly, the data is split in to training and testing set in the ratio of 70% and 30%. Subsequently, we employed GA and BPSO algorithms separately on 11 ML classifiers (Logistic Regression (LR), linear Support Vector Machine (lSVM), radial basis function Support Vector Machine (rSVM), Gaussian Naïve Bayes (GNB), Gaussian Process Classifier (GPC), k-Nearest Neighbor (kNN), Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Ada Boost (AB) and Quadratic Discriminant Analysis (QDA)), to determine the optimal subset of features (reduction of dimensionality) contributing to the highest classification accuracy. Among all the bio-inspired ML classifiers employed: GA-inspired MLP produced the maximum dimensionality reduction of 52.32% by selecting only 359 features and delivering 85.1% of the classification accuracy; GA-inspired AB delivered the maximum classification accuracy of 90.7% producing the dimensionality reduction of 41.43% by selecting only 441 features; And, BPSO-inspired GNB produced the maximum dimensionality reduction of 47.14% by selecting 396 features and delivering the classification accuracy of 79.3%; BPSOMLP delivered the maximum classification accuracy of 89% and produced 46.48% of the dimensionality reduction by selecting only 403 features.

摘要

鉴于开发高效的医疗保健数据机器学习(ML)分类模型的需求,以及生物启发优化(BIO)算法解决高维数据问题的潜力,我们研究了使用帕金森病(PD)数据集的最优特征子集训练的ML分类模型范围,以实现高效的PD分类。我们使用了两种BIO算法,即遗传算法(GA)和二进制粒子群优化算法(BPSO),来确定PD数据集的最优特征子集。用于研究的数据集包括从252名PD患者的755个属性(列、维度或特征)中获取的756个观测值(行或记录)。我们采用最大绝对值特征缩放方法对数据进行归一化,并采用留一法交叉验证方法以避免结果出现偏差。因此,数据按照70%和30%的比例划分为训练集和测试集。随后,我们分别在11个ML分类器(逻辑回归(LR)、线性支持向量机(lSVM)、径向基函数支持向量机(rSVM)、高斯朴素贝叶斯(GNB)、高斯过程分类器(GPC)、k近邻(kNN)、决策树(DT)、随机森林(RF)、多层感知器(MLP)、Ada Boost(AB)和二次判别分析(QDA))上应用GA和BPSO算法,以确定有助于实现最高分类准确率的最优特征子集(降维)。在所采用的所有受生物启发的ML分类器中:受GA启发的MLP通过仅选择359个特征实现了最大52.32%的降维,并达到了85.1%的分类准确率;受GA启发的AB实现了90.7%的最大分类准确率,通过仅选择441个特征实现了41.43%的降维;并且,受BPSO启发的GNB通过选择396个特征实现了最大47.14%的降维,并达到了79.3%的分类准确率;受BPSO启发的MLP实现了89%的最大分类准确率,通过仅选择403个特征实现了46.48%的降维。

相似文献

1
Bio-inspired dimensionality reduction for Parkinson's disease (PD) classification.用于帕金森病(PD)分类的生物启发式降维
Health Inf Sci Syst. 2020 Mar 9;8(1):13. doi: 10.1007/s13755-020-00104-w. eCollection 2020 Dec.

本文引用的文献

4
Parkinson's Disease Diagnosis via Joint Learning From Multiple Modalities and Relations.基于多模态和关系联合学习的帕金森病诊断。
IEEE J Biomed Health Inform. 2019 Jul;23(4):1437-1449. doi: 10.1109/JBHI.2018.2868420. Epub 2018 Sep 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验