Suppr超能文献

运用朴素贝叶斯分类器方法开发新型计算机预测模型以评估化学生殖毒性。

Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method.

机构信息

College of Life Science, Northwest Normal University, Lanzhou, Gansu, China.

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

出版信息

J Appl Toxicol. 2020 Sep;40(9):1198-1209. doi: 10.1002/jat.3975. Epub 2020 Mar 23.

Abstract

Assessment of reproductive toxicity is one of the important safety considerations in drug development. Thus, in the present research, the naïve Bayes (NB)-classifier method was applied to develop binary classification models. Six important molecular descriptors for reproductive toxicity were selected by the genetic algorithm. Then, 110 classification models were developed using six molecular descriptors and10 types of fingerprints with 11 different maximum diameters. Among these established models, the model based on six molecular descriptors and the SciTegic extended-connectivity fingerprints with 20 maximum diameters (LCFC_20) displayed the best prediction performance for reproductive toxicity (NB-1), which gave a 0.884 receiver operating characteristic (ROC) score and 91.8% overall prediction accuracy for the Training Set, and produced a 0.888 ROC score and 83.0% overall accuracy for the external Test Set I. In addition, for the external rat multi-generation reproductive toxicity dataset (Test Set II), the NB-1 model generated a 0.806 ROC score and 85.1% concordance. The generated prediction results indicated that the NB-1 model could give robust and reliable predictions for a reproductive toxicity potential of chemicals. Thus, the established model could be applied to filter early-stage molecules for potential reproductive adverse effects. In addition, six important molecular descriptors and new structural alerts for reproductive toxicity were identified, which could help medicinal chemists rationally guide the optimization of lead compounds and select chemicals with the best prospects of being safe and effective.

摘要

生殖毒性评估是药物开发中重要的安全性考虑因素之一。因此,在本研究中,应用朴素贝叶斯(NB)分类器方法来开发二进制分类模型。通过遗传算法选择了 6 个重要的生殖毒性分子描述符。然后,使用这 6 个分子描述符和 10 种指纹图谱(最大直径分别为 11 种不同值),开发了 110 个分类模型。在所建立的模型中,基于 6 个分子描述符和最大直径为 20 的 SciTegic 扩展连接指纹图谱(LCFC_20)的模型对生殖毒性具有最佳的预测性能(NB-1),其在训练集上的接收器工作特征(ROC)得分和总体预测准确率分别为 0.884 和 91.8%,在外部测试集 I 上的 ROC 得分和总体准确率分别为 0.888 和 83.0%。此外,对于外部大鼠多代生殖毒性数据集(测试集 II),NB-1 模型的 ROC 得分为 0.806,一致性为 85.1%。生成的预测结果表明,NB-1 模型可以对化学品的生殖毒性潜力进行稳健可靠的预测。因此,该模型可用于筛选具有潜在生殖不良反应的早期分子。此外,还确定了 6 个重要的分子描述符和新的生殖毒性结构警示符,这有助于药物化学家合理地指导先导化合物的优化,并选择具有最佳安全性和有效性前景的化学品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验