Zhang Qi, Li Dixiong, Wang Jia, Guo Sijia, Zhang Wei, Chen Dong, Li Qi, Rui Xianhong, Gan Liyong, Huang Shaoming
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
Nanoscale. 2020 Apr 3;12(13):6976-6982. doi: 10.1039/c9nr10338d.
Optimization of solid electrolytes (SEs) is of great significance for lithium-based solid state batteries (SSBs). However, insufficient Li ion transport, deficient interfacial compatibility and formation of lithium dendrites lead to poor cycling performance. Based on Li+ conductive metal-organic frameworks (LCMOFs), herein a multiscale optimization strategy is put forward to facilitate Li+ transport within the MOFs (molecular scale), between the MOFs' boundaries (nanoscale) and across the SE/electrode interface (microscale) in SSBs. LCMOFs are obtained by binding Li+ onto ionogenic chemical groups (-CO2H, -SO3H and -OH) in nanoscale dispersed MOFs. Both experimental results and DFT simulations confirm the key role of ionogenic groups for Li+ transport. Furthermore, benefiting from the optimized interfaces between LCMOF crystals, SEs with excellent electrochemical properties are obtained, including a high ionic conductivity of 1.06 × 10-3 S cm-1 at 25 °C, a wide electrochemical window from 2.0 to 4.5 V, low interfacial resistances and stable Li plating/stripping. The fabricated Li|SE|LiFePO4 SSB exhibits high and stable charge/discharge capacities under wide operation temperatures ranging from -20 to 60 °C.
固态电解质(SEs)的优化对于锂基固态电池(SSBs)具有重要意义。然而,锂离子传输不足、界面兼容性差以及锂枝晶的形成导致循环性能不佳。基于锂离子导电金属有机框架(LCMOFs),本文提出了一种多尺度优化策略,以促进锂离子在固态电池的金属有机框架内(分子尺度)、金属有机框架边界之间(纳米尺度)以及跨越固态电解质/电极界面(微米尺度)的传输。通过将锂离子结合到纳米级分散的金属有机框架中的离子ogenic化学基团(-CO2H、-SO3H和-OH)上获得LCMOFs。实验结果和密度泛函理论模拟均证实了离子ogenic基团对锂离子传输的关键作用。此外,受益于LCMOF晶体之间优化的界面,获得了具有优异电化学性能的固态电解质,包括在25°C下1.06×10-3 S cm-1的高离子电导率、2.0至4.5 V的宽电化学窗口、低界面电阻以及稳定的锂电镀/剥离。制备的锂|固态电解质|磷酸铁锂固态电池在-20至60°C的宽工作温度范围内表现出高且稳定的充放电容量。