Wu Jian-Fang, Guo Xin
Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
Small. 2019 Feb;15(5):e1804413. doi: 10.1002/smll.201804413. Epub 2019 Jan 9.
Solid-state batteries are hindered from practical applications, largely due to the retardant ionic transportation kinetics in solid electrolytes (SEs) and across electrode/electrolyte interfaces. Taking advantage of nanostructured UIO/Li-IL SEs, fast lithium ion transportation is achieved in the bulk and across the electrode/electrolyte interfaces; in UIO/Li-IL SEs, Li-containing ionic liquid (Li-IL) is absorbed in Uio-66 metal-organic frameworks (MOFs). The ionic conductivity of the UIO/Li-IL (15/16) SE reaches 3.2 × 10 S cm at 25 °C. Owing to the high surface tension of nanostructured UIO/Li-IL SEs, the contact between electrodes and the SE is excellent; consequently, the interfacial resistances of Li/SE and LiFePO /SE at 60 °C are about 44 and 206 Ω cm , respectively. Moreover, a stable solid conductive layer is formed at the Li/SE interface, making the Li plating/stripping stable. Solid-state batteries from the UIO/Li-IL SEs show high discharge capacities and excellent retentions (≈130 mA h g with a retention of 100% after 100 cycles at 0.2 C; 119 mA h g with a retention of 94% after 380 cycles at 1 C). This new type of nanostructured UIO/Li-IL SEs is very promising for solid-state batteries, and will open up an avenue toward safe and long lifespan energy storage systems.
固态电池在实际应用中受到阻碍,这主要归因于固体电解质(SEs)中以及跨电极/电解质界面的离子传输动力学迟缓。利用纳米结构的UIO/Li-IL固体电解质,在本体以及跨电极/电解质界面实现了快速锂离子传输;在UIO/Li-IL固体电解质中,含锂离子液体(Li-IL)被吸收到Uio-66金属有机框架(MOFs)中。UIO/Li-IL(15/16)固体电解质在25℃时的离子电导率达到3.2×10 S cm 。由于纳米结构的UIO/Li-IL固体电解质具有高表面张力,电极与固体电解质之间的接触良好;因此,Li/SE和LiFePO /SE在60℃时的界面电阻分别约为44和206Ω cm 。此外,在Li/SE界面形成了稳定的固体导电层,使得锂的电镀/剥离稳定。基于UIO/Li-IL固体电解质的固态电池表现出高放电容量和优异的保持率(在0.2 C下100次循环后为≈130 mA h g ,保持率为100%;在1 C下380次循环后为119 mA h g ,保持率为94%)。这种新型的纳米结构UIO/Li-IL固体电解质对固态电池非常有前景,并将为安全和长寿命储能系统开辟一条道路。