Suppr超能文献

细胞肌动蛋白皮层的泊松比与频率相关。

The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent.

作者信息

Mokbel Marcel, Hosseini Kamran, Aland Sebastian, Fischer-Friedrich Elisabeth

机构信息

Faculty of Informatics/Mathematics, Hochschule für Technik und Wirtschaft, Dresden, Germany.

Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.

出版信息

Biophys J. 2020 Apr 21;118(8):1968-1976. doi: 10.1016/j.bpj.2020.03.002. Epub 2020 Mar 7.

Abstract

Cell shape changes are vital for many physiological processes such as cell proliferation, cell migration, and morphogenesis. They emerge from an orchestrated interplay of active cellular force generation and passive cellular force response, both crucially influenced by the actin cytoskeleton. To model cellular force response and deformation, cell mechanical models commonly describe the actin cytoskeleton as a contractile isotropic incompressible material. However, in particular at slow frequencies, there is no compelling reason to assume incompressibility because the water content of the cytoskeleton may change. Here, we challenge the assumption of incompressibility by comparing computer simulations of an isotropic actin cortex with tunable Poisson ratio to measured cellular force response. Comparing simulation results and experimental data, we determine the Poisson ratio of the cortex in a frequency-dependent manner. We find that the Poisson ratio of the cortex decreases in the measured frequency regime analogous to trends reported for the Poisson ratio of glassy materials. Our results therefore indicate that actin cortex compression or dilation is possible in response to acting forces at sufficiently fast timescales. This finding has important implications for the parameterization in active gel theories that describe actin cytoskeletal dynamics.

摘要

细胞形状变化对于许多生理过程至关重要,如细胞增殖、细胞迁移和形态发生。它们源于主动细胞力产生和被动细胞力响应的协同相互作用,这两者都受到肌动蛋白细胞骨架的关键影响。为了模拟细胞力响应和变形,细胞力学模型通常将肌动蛋白细胞骨架描述为一种收缩性各向同性不可压缩材料。然而,特别是在低频时,没有令人信服的理由假设不可压缩性,因为细胞骨架的含水量可能会发生变化。在这里,我们通过将具有可调泊松比的各向同性肌动蛋白皮质的计算机模拟与测量的细胞力响应进行比较,对不可压缩性假设提出质疑。通过比较模拟结果和实验数据,我们以频率依赖的方式确定皮质的泊松比。我们发现,在测量的频率范围内,皮质的泊松比降低,类似于报道的玻璃态材料泊松比的趋势。因此,我们的结果表明,在足够快的时间尺度上,肌动蛋白皮质可能会因作用力而发生压缩或膨胀。这一发现对于描述肌动蛋白细胞骨架动力学的活性凝胶理论中的参数化具有重要意义。

相似文献

1
The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent.细胞肌动蛋白皮层的泊松比与频率相关。
Biophys J. 2020 Apr 21;118(8):1968-1976. doi: 10.1016/j.bpj.2020.03.002. Epub 2020 Mar 7.

引用本文的文献

1
Mathematical modelling of mechanotransduction via RhoA signalling pathways.通过RhoA信号通路进行机械转导的数学建模。
PLoS Comput Biol. 2025 Jul 31;21(7):e1013305. doi: 10.1371/journal.pcbi.1013305. eCollection 2025 Jul.
5
Disrupted Stiffness Ratio Alters Nuclear Mechanosensing.破坏的刚度比改变核机械传感。
Matter. 2023 Oct 4;6(10):3608-3630. doi: 10.1016/j.matt.2023.08.010. Epub 2023 Sep 1.
9
Poroelastic osmoregulation of living cell volume.活细胞体积的孔隙弹性渗透调节
iScience. 2021 Nov 22;24(12):103482. doi: 10.1016/j.isci.2021.103482. eCollection 2021 Dec 17.
10

本文引用的文献

2
Minimal Model of Cellular Symmetry Breaking.细胞对称破缺的最小模型。
Phys Rev Lett. 2019 Nov 1;123(18):188101. doi: 10.1103/PhysRevLett.123.188101.
3
Self-organized shape dynamics of active surfaces.活性表面的自组织形状动力学。
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):29-34. doi: 10.1073/pnas.1810896115. Epub 2018 Dec 19.
4
Rheology of the Active Cell Cortex in Mitosis.有丝分裂中活性细胞皮层的流变学
Biophys J. 2016 Aug 9;111(3):589-600. doi: 10.1016/j.bpj.2016.06.008.
7
Monitoring actin cortex thickness in live cells.监测活细胞中的肌动蛋白皮层厚度。
Biophys J. 2013 Aug 6;105(3):570-80. doi: 10.1016/j.bpj.2013.05.057.
9
Wedged AFM-cantilevers for parallel plate cell mechanics.楔形原子力显微镜悬臂梁用于平行板细胞力学研究。
Methods. 2013 Apr 1;60(2):186-94. doi: 10.1016/j.ymeth.2013.02.015. Epub 2013 Mar 6.
10
Actin cortex mechanics and cellular morphogenesis.肌动蛋白皮层力学与细胞形态发生。
Trends Cell Biol. 2012 Oct;22(10):536-45. doi: 10.1016/j.tcb.2012.07.001. Epub 2012 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验