Suppr超能文献

转录和翻译 S-box 核酶在配体结合特性上存在差异。

Transcriptional and translational S-box riboswitches differ in ligand-binding properties.

机构信息

Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.

Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210

出版信息

J Biol Chem. 2020 May 15;295(20):6849-6860. doi: 10.1074/jbc.RA120.012853. Epub 2020 Mar 24.

Abstract

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the gene from The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational RNA-SAM complex is significantly shorter than that of the transcriptional RNA. This finding suggests that, unlike the transcriptional RNA, the translational riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.

摘要

有许多核糖开关利用相同的配体结合结构域来调节转录或翻译。S-box(SAM-I)核糖开关,包括存在于基因中的核糖开关,该基因编码半胱氨酸γ-合酶,响应 SAM 调节参与蛋氨酸代谢的基因的表达,主要在转录衰减水平上。预测一类较罕见的 S-box 核糖开关调节翻译起始。在这里,我们在来自的基因中鉴定并表征了一个翻译 S-box 核糖开关。核糖开关的调节机制受配体相互作用的动力学影响。翻译 RNA-SAM 复合物的半衰期明显短于转录 RNA。这一发现表明,与转录 RNA 不同,翻译 RNA 可以做出多个可逆的调节决定。对这两种 RNA 的比较表明,转录 RNA 中 P3 螺旋的第二个内部环通常含有一个 A 残基,而翻译 RNA 含有一个 C 残基,该 C 残基在其他预测调节翻译的 S-box RNA 中保守。突变分析表明,A 或 C 残基的存在与 RNA-SAM 复合物的稳定性相关。生化分析表明,内部环序列通过影响参与 SAM 结合的残基的灵活性,从而影响核糖开关功能的分子机制,从而对 RNA-SAM 复合物的稳定性起关键作用。

相似文献

3
The dynamic nature of RNA as key to understanding riboswitch mechanisms.RNA 的动态本质是理解核酶机制的关键。
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
7
The SAM-responsive S(MK) box is a reversible riboswitch.SAM 响应性 S(MK)框是一种可逆的核酶。
Mol Microbiol. 2010 Dec;78(6):1393-402. doi: 10.1111/j.1365-2958.2010.07410.x. Epub 2010 Oct 18.
8
Structural basis for diversity in the SAM clan of riboswitches.SAM 结构域类核糖体开关结构多样性的基础。
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6624-9. doi: 10.1073/pnas.1312918111. Epub 2014 Apr 21.
9
New tRNA contacts facilitate ligand binding in a T box riboswitch.新的 tRNA 接触促进 T 盒核糖体开关中配体的结合。
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3894-3899. doi: 10.1073/pnas.1721254115. Epub 2018 Mar 26.
10
The structure of the SAM/SAH-binding riboswitch.SAM/SAH 结合型核糖开关的结构。
Nucleic Acids Res. 2019 Mar 18;47(5):2654-2665. doi: 10.1093/nar/gky1283.

本文引用的文献

1
Riboswitch distribution, structure, and function in bacteria.细菌中的核糖开关分布、结构和功能。
Gene. 2019 Aug 5;708:38-48. doi: 10.1016/j.gene.2019.05.036. Epub 2019 May 22.
4
Riboswitch diversity and distribution.核糖开关的多样性与分布
RNA. 2017 Jul;23(7):995-1011. doi: 10.1261/rna.061234.117. Epub 2017 Apr 10.
5
Reversible-Switch Mechanism of the SAM-III Riboswitch.SAM-III核糖开关的可逆开关机制。
J Phys Chem B. 2016 Dec 8;120(48):12305-12311. doi: 10.1021/acs.jpcb.6b09698. Epub 2016 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验