Doerr Vivian, Montalvo Ryan N, Kwon Oh Sung, Talbert Erin E, Hain Brian A, Houston Fraser E, Smuder Ashley J
Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
Antioxidants (Basel). 2020 Mar 23;9(3):263. doi: 10.3390/antiox9030263.
Clinical use of the chemotherapeutic doxorubicin (DOX) promotes skeletal muscle atrophy and weakness, adversely affecting patient mobility and strength. Although the mechanisms responsible for DOX-induced skeletal muscle dysfunction remain unclear, studies implicate the significant production of reactive oxygen species (ROS) in this pathology. Supraphysiological ROS levels can enhance protein degradation via autophagy, and it is established that DOX upregulates autophagic signaling in skeletal muscle. To determine the precise contribution of accelerated autophagy to DOX-induced skeletal muscle dysfunction, we inhibited autophagy in the soleus via transduction of a dominant negative mutation of the autophagy related 5 (ATG5) protein. Targeted inhibition of autophagy prevented soleus muscle atrophy and contractile dysfunction acutely following DOX administration, which was associated with a reduction in mitochondrial ROS and maintenance of mitochondrial respiratory capacity. These beneficial modifications were potentially the result of enhanced transcription of antioxidant response element-related genes and increased antioxidant capacity. Specifically, our results showed significant upregulation of peroxisome proliferator-activated receptor gamma co-activator 1-alpha, nuclear respiratory factor-1, nuclear factor erythroid-2-related factor-2, nicotinamide-adenine dinucleotide phosphate quinone dehydrogenase-1, and catalase in the soleus with DOX treatment when autophagy was inhibited. These findings establish a significant role of autophagy in the development of oxidative stress and skeletal muscle weakness following DOX administration.
化疗药物阿霉素(DOX)的临床应用会导致骨骼肌萎缩和无力,对患者的活动能力和力量产生不利影响。尽管DOX诱导骨骼肌功能障碍的机制尚不清楚,但研究表明活性氧(ROS)的大量产生与此病理过程有关。超生理水平的ROS可通过自噬增强蛋白质降解,并且已证实DOX可上调骨骼肌中的自噬信号。为了确定加速自噬对DOX诱导的骨骼肌功能障碍的确切作用,我们通过转导自噬相关5(ATG5)蛋白的显性负突变来抑制比目鱼肌中的自噬。靶向抑制自噬可在给予DOX后急性预防比目鱼肌萎缩和收缩功能障碍,这与线粒体ROS的减少和线粒体呼吸能力的维持有关。这些有益的改变可能是抗氧化反应元件相关基因转录增强和抗氧化能力增加的结果。具体而言,我们的结果显示,在抑制自噬的情况下,用DOX处理的比目鱼肌中过氧化物酶体增殖物激活受体γ共激活因子1-α、核呼吸因子-1、核因子红细胞2相关因子-2、烟酰胺腺嘌呤二核苷酸磷酸醌脱氢酶-1和过氧化氢酶显著上调。这些发现确立了自噬在DOX给药后氧化应激和骨骼肌无力发展中的重要作用。