CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany.
Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.
Nat Commun. 2020 Mar 24;11(1):1535. doi: 10.1038/s41467-020-15287-9.
Neurons maintain axonal homeostasis via employing a unique organization of the microtubule (MT) cytoskeleton, which supports axonal morphology and provides tracks for intracellular transport. Abnormal MT-based trafficking hallmarks the pathology of neurodegenerative diseases, but the exact mechanism regulating MT dynamics in axons remains enigmatic. Here we report on a regulation of MT dynamics by AuTophaGy(ATG)-related proteins, which previously have been linked to the autophagy pathway. We find that ATG proteins required for LC3 lipid conjugation are dispensable for survival of excitatory neurons and instead regulate MT stability via controlling the abundance of the MT-binding protein CLASP2. This function of ATGs is independent of their role in autophagy and requires the active zone protein ELKS1. Our results highlight a non-canonical role of ATG proteins in neurons and suggest that pharmacological activation of autophagy may not only promote the degradation of cytoplasmic material, but also impair axonal integrity via altering MT stability.
神经元通过微管 (MT) 细胞骨架的独特组织来维持轴突稳态,该组织支持轴突形态并为细胞内运输提供轨道。异常的基于 MT 的运输是神经退行性疾病病理学的标志,但调节轴突中 MT 动力学的确切机制仍然是个谜。在这里,我们报告了自噬相关蛋白 (ATG) 对 MT 动力学的调节,这些蛋白先前与自噬途径有关。我们发现,LC3 脂质连接所必需的 ATG 蛋白对于兴奋性神经元的存活并非不可或缺,而是通过控制 MT 结合蛋白 CLASP2 的丰度来调节 MT 稳定性。ATGs 的这一功能与其在自噬中的作用无关,需要活性区蛋白 ELKS1。我们的研究结果强调了 ATG 蛋白在神经元中的非典型作用,并表明自噬的药理学激活不仅可以促进细胞质物质的降解,还可以通过改变 MT 稳定性来损害轴突完整性。