Chen Yan-Min, Gerwin Claudia, Sheng Zu-Hang
Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke-National Institutes of Health, Bethesda, Maryland 20892-3706, USA.
J Neurosci. 2009 Jul 29;29(30):9429-38. doi: 10.1523/JNEUROSCI.1472-09.2009.
Mitochondria in the cell bodies of neurons are transported down neuronal processes in response to changes in local energy and metabolic states. Because of their extreme polarity, neurons require specialized mechanisms to regulate mitochondrial transport and retention in axons. Our previous studies using syntaphilin (snph) knock-out mice provided evidence that SNPH targets to axonal mitochondria and controls their mobility through its static interaction with microtubules (MTs). However, the mechanisms regulating SNPH-mediated mitochondrial docking remain elusive. Here, we report an unexpected role for dynein light chain LC8. Using proteomic biochemical and cell biological assays combined with time-lapse imaging in live snph wild-type and mutant neurons, we reveal that LC8 regulates axonal mitochondrial mobility by binding to SNPH, thus enhancing the SNPH-MT docking interaction. Using mutagenesis assays, we mapped a seven-residue LC8-binding motif. Through this specific interaction, SNPH recruits LC8 to axonal mitochondria; such colocalization is abolished when neurons express SNPH mutants lacking the LC8-binding motif. Transient LC8 expression reduces mitochondrial mobility in snph (+/+) but not (-/-) neurons, suggesting that the observed effect of LC8 depends on the SNPH-mediated docking mechanism. In contrast, deleting the LC8-binding motif impairs the ability of SNPH to immobilize axonal mitochondria. Furthermore, circular dichroism spectrum analysis shows that LC8 stabilizes an alpha-helical coiled-coil within the MT-binding domain of SNPH against thermal unfolding. Thus, our study provides new mechanistic insights into controlling mitochondrial mobility through a dynamic interaction between the mitochondrial docking receptor and axonal cytoskeleton.
神经元细胞体中的线粒体可根据局部能量和代谢状态的变化沿着神经突进行运输。由于神经元具有极端的极性,因此需要特殊的机制来调节线粒体在轴突中的运输和滞留。我们之前使用突触素(snph)基因敲除小鼠的研究表明,SNPH靶向轴突线粒体,并通过与微管(MTs)的静态相互作用来控制其移动性。然而,调节SNPH介导的线粒体对接的机制仍然不清楚。在这里,我们报道了动力蛋白轻链LC8的一个意想不到的作用。通过蛋白质组学、生化和细胞生物学分析,结合对野生型和突变型snph神经元的实时延时成像,我们发现LC8通过与SNPH结合来调节轴突线粒体的移动性,从而增强SNPH与MT的对接相互作用。通过诱变分析,我们确定了一个七残基的LC8结合基序。通过这种特异性相互作用,SNPH将LC8招募到轴突线粒体;当神经元表达缺乏LC8结合基序的SNPH突变体时,这种共定位就会消失。短暂表达LC8会降低野生型snph(+/+)而非基因敲除型(-/-)神经元中线粒体的移动性,这表明观察到的LC8的作用依赖于SNPH介导的对接机制。相反,删除LC8结合基序会损害SNPH固定轴突线粒体的能力。此外,圆二色光谱分析表明,LC8可稳定SNPH的MT结合域内的α-螺旋卷曲螺旋结构,防止其热解折叠。因此,我们的研究通过线粒体对接受体与轴突细胞骨架之间的动态相互作用,为控制线粒体移动性提供了新的机制见解。