Suppr超能文献

评估用于长读长测序数据集的结构变异检测工具 于……

Evaluating Structural Variation Detection Tools for Long-Read Sequencing Datasets in .

作者信息

Luan Mei-Wei, Zhang Xiao-Ming, Zhu Zi-Bin, Chen Ying, Xie Shang-Qian

机构信息

Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, China.

College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, China.

出版信息

Front Genet. 2020 Mar 9;11:159. doi: 10.3389/fgene.2020.00159. eCollection 2020.

Abstract

Structural variation (SV) represents a major form of genetic variations that contribute to polymorphic variations, human diseases, and phenotypes in many organisms. Long-read sequencing has been successfully used to identify novel and complex SVs. However, comparison of SV detection tools for long-read sequencing datasets has not been reported. Therefore, we developed an analysis workflow that combined two alignment tools (NGMLR and minimap2) and five callers (Sniffles, Picky, smartie-sv, PBHoney, and NanoSV) to evaluate the SV detection in six datasets of . The accuracy of SV regions was validated by re-aligning raw reads in diverse alignment tools, SV callers, experimental conditions, and sequencing platforms. The results showed that SV detection between NGMLR and minimap2 was not significant when using the same caller. The PBHoney was with the highest average accuracy (89.04%) and Picky has the lowest average accuracy (35.85%). The accuracy of NanoSV, Sniffles, and smartie-sv was 68.67%, 60.47%, and 57.67%, respectively. In addition, smartie-sv and NanoSV detected the most and least number of SVs, and SV detection from the PacBio sequencing platform was significantly more than that from ONT ( = 0.000173).

摘要

结构变异(SV)是遗传变异的一种主要形式,它在许多生物体中导致多态性变异、人类疾病和表型。长读长测序已成功用于识别新的和复杂的SV。然而,尚未有关于长读长测序数据集的SV检测工具比较的报道。因此,我们开发了一种分析流程,该流程结合了两种比对工具(NGMLR和minimap2)和五种SV caller(Sniffles、Picky、smartie-sv、PBHoney和NanoSV),以评估六个数据集的SV检测情况。通过在不同的比对工具、SV caller、实验条件和测序平台中重新比对原始读段,验证了SV区域的准确性。结果表明,使用相同的caller时,NGMLR和minimap2之间的SV检测没有显著差异。PBHoney的平均准确率最高(89.04%),Picky的平均准确率最低(35.85%)。NanoSV、Sniffles和smartie-sv的准确率分别为68.67%、60.47%和57.67%。此外,smartie-sv和NanoSV检测到的SV数量最多和最少,并且来自PacBio测序平台的SV检测显著多于来自ONT的检测(P = 0.000173)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验