Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
University of Chinese Academy of Sciences, Beijing, China.
Nature. 2018 Aug;560(7718):331-335. doi: 10.1038/s41586-018-0382-x. Epub 2018 Aug 1.
Eukaryotic genomes are generally organized in multiple chromosomes. Here we have created a functional single-chromosome yeast from a Saccharomyces cerevisiae haploid cell containing sixteen linear chromosomes, by successive end-to-end chromosome fusions and centromere deletions. The fusion of sixteen native linear chromosomes into a single chromosome results in marked changes to the global three-dimensional structure of the chromosome due to the loss of all centromere-associated inter-chromosomal interactions, most telomere-associated inter-chromosomal interactions and 67.4% of intra-chromosomal interactions. However, the single-chromosome and wild-type yeast cells have nearly identical transcriptome and similar phenome profiles. The giant single chromosome can support cell life, although this strain shows reduced growth across environments, competitiveness, gamete production and viability. This synthetic biology study demonstrates an approach to exploration of eukaryote evolution with respect to chromosome structure and function.
真核生物基因组通常组织在多个染色体中。在这里,我们通过连续的端到端染色体融合和着丝粒缺失,从一个含有十六条线性染色体的酿酒酵母单倍体细胞中创建了一个功能性的单染色体酵母。由于所有着丝粒相关的染色体间相互作用、大多数端粒相关的染色体间相互作用和 67.4%的染色体内相互作用的丧失,将十六条天然线性染色体融合成一条单染色体导致染色体的全局三维结构发生显著变化。然而,单染色体和野生型酵母细胞具有几乎相同的转录组和相似的表型谱。这条巨大的单染色体可以支持细胞的生命活动,尽管该菌株在各种环境下的生长、竞争力、配子产生和活力都有所下降。这项合成生物学研究展示了一种探索真核生物进化的方法,涉及染色体结构和功能。