From the Cardiovascular Institute (T.S., T.R.M., D.M.R., L.L., C.P., N.P., K.M., D.P.K.).
Institute for Diabetes, Obesity and Metabolism, Department of Medicine (S.W., J.K., K.J.W.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Circ Res. 2020 Jun 5;126(12):1685-1702. doi: 10.1161/CIRCRESAHA.119.316100. Epub 2020 Mar 26.
The heart undergoes dramatic developmental changes during the prenatal to postnatal transition, including maturation of cardiac myocyte energy metabolic and contractile machinery. Delineation of the mechanisms involved in cardiac postnatal development could provide new insight into the fetal shifts that occur in the diseased heart and unveil strategies for driving maturation of stem cell-derived cardiac myocytes.
To delineate transcriptional drivers of cardiac maturation.
We hypothesized that ERR (estrogen-related receptor) α and γ, known transcriptional regulators of postnatal mitochondrial biogenesis and function, serve a role in the broader cardiac maturation program. We devised a strategy to knockdown the expression of ERRα and γ in heart after birth (pn-csERRα/γ [postnatal cardiac-specific ERRα/γ]) in mice. With high levels of knockdown, pn-csERRα/γ knockdown mice exhibited cardiomyopathy with an arrest in mitochondrial maturation. RNA sequence analysis of pn-csERRα/γ knockdown hearts at 5 weeks of age combined with chromatin immunoprecipitation with deep sequencing and functional characterization conducted in human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CM) demonstrated that ERRγ activates transcription of genes involved in virtually all aspects of postnatal developmental maturation, including mitochondrial energy transduction, contractile function, and ion transport. In addition, ERRγ was found to suppress genes involved in fibroblast activation in hearts of pn-csERRα/γ knockdown mice. Disruption of and in mice during fetal development resulted in perinatal lethality associated with structural and genomic evidence of an arrest in cardiac maturation, including persistent expression of early developmental and noncardiac lineage gene markers including cardiac fibroblast signatures. Lastly, targeted deletion of and in hiPSC-CM derepressed expression of early (transcription factor 21 or TCF21) and mature (periostin, collagen type III) fibroblast gene signatures.
ERRα and γ are critical regulators of cardiac myocyte maturation, serving as transcriptional activators of adult cardiac metabolic and structural genes, an.d suppressors of noncardiac lineages including fibroblast determination.
心脏在产前到产后的过渡过程中经历了显著的发育变化,包括心肌细胞能量代谢和收缩机制的成熟。阐明参与心脏产后发育的机制可以为患病心脏中发生的胎儿转移提供新的见解,并揭示驱动干细胞衍生心肌细胞成熟的策略。
描绘心脏成熟的转录驱动因素。
我们假设,已知的产后线粒体生物发生和功能的转录调节因子 ERR(雌激素相关受体)α和γ,在更广泛的心脏成熟程序中发挥作用。我们设计了一种在出生后(pn-csERRα/γ[产后心脏特异性 ERRα/γ])敲低心脏中 ERRα和γ表达的策略。在敲低水平较高的情况下,pn-csERRα/γ 敲低小鼠表现出心肌病,线粒体成熟停滞。对 5 周龄 pn-csERRα/γ 敲低心脏的 RNA 序列分析,结合染色质免疫沉淀与深度测序和功能特征分析,在人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)中进行,表明 ERRγ激活了参与几乎所有产后发育成熟方面的基因转录,包括线粒体能量转导、收缩功能和离子转运。此外,还发现 ERRγ抑制了 pn-csERRα/γ 敲低小鼠心脏中与成纤维细胞激活相关的基因。在胎儿发育过程中敲除 和 ,导致围产期死亡,伴有心脏成熟停滞的结构和基因组证据,包括早期发育和非心脏谱系基因标志物的持续表达,包括心脏成纤维细胞标志物。最后,靶向敲除 hiPSC-CM 中的 和 ,解除了早期(转录因子 21 或 TCF21)和成体(骨桥蛋白、III 型胶原蛋白)成纤维细胞基因标志物的表达。
ERRα 和 γ 是心肌细胞成熟的关键调节因子,作为成人心脏代谢和结构基因的转录激活因子,以及包括成纤维细胞决定在内的非心脏谱系的抑制剂。