Suppr超能文献

人诱导多能干细胞分化的心肌细胞中线粒体生物发生的蛋白质组学分析。

Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells.

机构信息

Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey.

Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2021 Apr 1;320(4):R547-R562. doi: 10.1152/ajpregu.00207.2020. Epub 2020 Oct 28.

Abstract

Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a twofold change at time points up to 120 days relative to 12 days were subjected to ingenuity pathway analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1-α), the insulin receptor (IR), and the retinoblastoma protein (Rb1) transcriptional repressor. IPA and immunoblotting showed upregulation of the mitochondrial LonP1 protease-a regulator of mitochondrial proteostasis, energetics, and metabolism. LonP1 knockdown increased FAO in neonatal rat ventricular cardiomyocytes (nRVMs). Our results support the notion that LonP1 upregulation negatively regulates FAO in cardiomyocytes to calibrate the flux between glucose and fatty acid oxidation. We discuss potential mechanisms by which IR, Rb1, and LonP1 regulate the metabolic shift from glycolysis to OXPHOS and FAO. These newly identified factors and pathways may help in optimizing the maturation of iPSC-CMs.

摘要

线粒体在人类心肌细胞(CM)的分化和成熟中发挥关键作用。由于人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)在心脏病治疗中有应用潜力,我们试图确定关键的线粒体途径和调节因子,这些可能为改善心脏分化和成熟提供靶点。对从真皮成纤维细胞(dFCM)和心脏成纤维细胞(cFCM)分化的 hiPSC-CMs 在分化 12 天至 115 天之间以及从成年和新生小鼠心脏分离的富含线粒体的蛋白质提取物进行蛋白质组学分析。将在 120 天内相对于 12 天时间点有两倍变化的线粒体蛋白进行 Ingenuity 通路分析(IPA)。上调最明显的是脂肪酸氧化(FAO)、三羧酸(TCA)循环、氧化磷酸化(OXPHOS)和支链氨基酸(BCAA)降解的代谢途径。预测激活的最高上游调节因子是过氧化物酶体增殖物激活受体γ共激活因子 1α(PGC1-α)、胰岛素受体(IR)和视网膜母细胞瘤蛋白(Rb1)转录抑制剂。IPA 和免疫印迹显示线粒体 LonP1 蛋白酶的上调-一种调节线粒体蛋白稳态、能量和代谢的调节剂。LonP1 的敲低增加了新生大鼠心室心肌细胞(nRVMs)中的 FAO。我们的结果支持这样的观点,即 LonP1 的上调负调节心肌细胞中的 FAO,以校准葡萄糖和脂肪酸氧化之间的通量。我们讨论了 IR、Rb1 和 LonP1 调节从糖酵解到 OXPHOS 和 FAO 的代谢转变的潜在机制。这些新鉴定的因子和途径可能有助于优化 iPSC-CMs 的成熟。

相似文献

1
Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells.
Am J Physiol Regul Integr Comp Physiol. 2021 Apr 1;320(4):R547-R562. doi: 10.1152/ajpregu.00207.2020. Epub 2020 Oct 28.
4
Zinc Oxide Nanoparticles Induce Mitochondrial Biogenesis Impairment and Cardiac Dysfunction in Human iPSC-Derived Cardiomyocytes.
Int J Nanomedicine. 2020 Apr 21;15:2669-2683. doi: 10.2147/IJN.S249912. eCollection 2020.
5
Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
Circ Res. 2018 Oct 12;123(9):1066-1079. doi: 10.1161/CIRCRESAHA.118.313249.
10
Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes.
Stem Cell Reports. 2018 Mar 13;10(3):834-847. doi: 10.1016/j.stemcr.2018.01.039. Epub 2018 Mar 1.

引用本文的文献

2
Mitochondrial metabolic maturation in postnatal right ventricle restricted by volume overload.
Intractable Rare Dis Res. 2025 Feb 28;14(1):29-35. doi: 10.5582/irdr.2024.01063.
3
Data-Driven Maturity Level Evaluation for Cardiomyocytes Derived from Human Pluripotent Stem Cells (Invited Paper).
Electronics (Basel). 2024 Dec 2;13(24). doi: 10.3390/electronics13244985. Epub 2024 Dec 18.
4
Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects.
Stem Cell Res Ther. 2024 Oct 8;15(1):354. doi: 10.1186/s13287-024-03961-4.
5
TRIM21-mediated ubiquitination of SQSTM1/p62 abolishes its Ser403 phosphorylation and enhances palmitic acid cytotoxicity.
Autophagy. 2025 Jan;21(1):178-190. doi: 10.1080/15548627.2024.2394308. Epub 2024 Sep 10.
6
Proteomics of the heart.
Physiol Rev. 2024 Jul 1;104(3):931-982. doi: 10.1152/physrev.00026.2023. Epub 2024 Feb 1.
7
Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome.
MedComm (2020). 2023 Oct 9;4(5):e396. doi: 10.1002/mco2.396. eCollection 2023 Oct.
9
Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy.
J Mol Med (Berl). 2022 Dec;100(12):1721-1739. doi: 10.1007/s00109-022-02269-1. Epub 2022 Nov 17.
10
Roles of LonP1 in Oral-Maxillofacial Developmental Defects and Tumors: A Novel Insight.
Int J Mol Sci. 2022 Nov 2;23(21):13370. doi: 10.3390/ijms232113370.

本文引用的文献

5
Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo.
J Mol Cell Cardiol. 2019 Mar;128:38-50. doi: 10.1016/j.yjmcc.2018.12.017. Epub 2019 Jan 6.
6
An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia.
J Clin Invest. 2019 Feb 1;129(2):802-819. doi: 10.1172/JCI122035. Epub 2019 Jan 22.
7
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
10
Advanced maturation of human cardiac tissue grown from pluripotent stem cells.
Nature. 2018 Apr;556(7700):239-243. doi: 10.1038/s41586-018-0016-3. Epub 2018 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验