Suppr超能文献

基于Copula的稳健最优区组设计。

Copula-based robust optimal block designs.

作者信息

Rappold A, Müller W G, Woods D C

机构信息

Institute of Applied Statistics Johannes Kepler University Linz Linz Austria.

Southampton Statistical Sciences Research Institute University of Southampton Southampton UK.

出版信息

Appl Stoch Models Bus Ind. 2020 Jan-Feb;36(1):210-219. doi: 10.1002/asmb.2469. Epub 2019 May 30.

Abstract

Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modeling assumption for such experiments is that responses from units within a block are dependent. Accounting for such dependencies in both the design of the experiment and the modeling of the resulting data when the response is not normally distributed can be challenging, particularly in terms of the computation required to find an optimal design. The application of copulas and marginal modeling provides a computationally efficient approach for estimating population-average treatment effects. Motivated by an experiment from materials testing, we develop and demonstrate designs with blocks of size two using copula models. Such designs are also important in applications ranging from microarray experiments to experiments on human eyes or limbs with naturally occurring blocks of size two. We present a methodology for design selection, make comparisons to existing approaches in the literature, and assess the robustness of the designs to modeling assumptions.

摘要

区组化通常用于通过将同类实验单元聚集在一起,来减少设计实验中已知的变异性。此类实验的一个常见建模假设是,一个区组内各单元的响应是相关的。当响应不是正态分布时,在实验设计和所得数据建模中考虑此类相关性可能具有挑战性,特别是在寻找最优设计所需的计算方面。Copula函数和边际建模的应用为估计总体平均治疗效果提供了一种计算效率高的方法。受材料测试实验的启发,我们使用Copula模型开发并展示了大小为二的区组设计。此类设计在从微阵列实验到人类眼睛或四肢实验(这些实验自然地存在大小为二的区组)等各种应用中也很重要。我们提出了一种设计选择方法,与文献中的现有方法进行比较,并评估设计对建模假设的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6940/7079558/e9158e4fafa0/ASMB-36-210-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验